Systems biology based metabolic engineering for non-natural chemicals

被引:35
作者
Biz, Alessandra [1 ]
Proulx, Scott [1 ]
Xu, Zhiqing [1 ]
Siddartha, Kavya [1 ]
Indrayanti, Alex Mulet [1 ]
Mahadevan, Radhakrishnan [1 ]
机构
[1] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Stems biology; Non-natural chemicals; In-silico pathway design; Directed evolution; de novo protein engineering; Genome-scale models; Flux balance analysis; Dynamic control; Growth-coupled production; Orthogonality; DYNAMIC PATHWAY REGULATION; MUCONIC ACID PRODUCTION; ESCHERICHIA-COLI; MICROBIAL-PRODUCTION; COMPUTATIONAL DESIGN; BIOCHEMICAL REACTIONS; STRAIN OPTIMIZATION; DIRECTED EVOLUTION; RATIONAL DESIGN; GENE-EXPRESSION;
D O I
10.1016/j.biotechadv.2019.04.001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Production of chemicals in microorganisms is no longer restricted to products arising from native metabolic potential. In this review, we highlight the evolution of metabolic engineering studies, from the production of natural chemicals fermented from biomass hydrolysates, to the engineering of microorganisms for the production of non-natural chemicals. Advances in synthetic biology are accelerating the successful development of microbial cell factories to directly produce value-added chemicals. Here we outline the emergence of novel computational tools for the creation of synthetic pathways, for designing artificial enzymes for non-natural reactions and for re-wiring host metabolism to increase the metabolic flux to products. We also highlight exciting opportunities for applying directed evolution of enzymes, dynamic control of growth and production, growth coupling strategies as well as decoupled strategies based on orthogonal pathways in the context of non-natural chemicals.
引用
收藏
页数:20
相关论文
共 207 条
[1]   Identification of metabolic engineering targets for the enhancement of 1,4-butanediol production in recombinant E. coli using large-scale kinetic models [J].
Andreozzi, Stefano ;
Chakrabarti, Anirikh ;
Soh, Keng Cher ;
Burgard, Anthony ;
Yang, Tae Hoon ;
Van Dien, Stephen ;
Miskovic, Ljubisa ;
Hatzimanikatis, Vassily .
METABOLIC ENGINEERING, 2016, 35 :148-159
[2]   Analysis and Design of a Genetic Circuit for Dynamic Metabolic Engineering [J].
Anesiadis, Nikolaos ;
Kobayashi, Hideki ;
Cluett, William R. ;
Mahadevan, Radhakrishnan .
ACS SYNTHETIC BIOLOGY, 2013, 2 (08) :442-452
[3]   An in-silico approach to predict and exploit synthetic lethality in cancer metabolism [J].
Apaolaza, Inigo ;
San Jose-Eneriz, Edurne ;
Tobalina, Luis ;
Miranda, Estibaliz ;
Garate, Leire ;
Agirre, Xabier ;
Prosper, Felipe ;
Planes, Francisco J. .
NATURE COMMUNICATIONS, 2017, 8
[4]   Robust mutant strain design by pessimistic optimization [J].
Apaydin, Meltem ;
Xu, Liang ;
Zeng, Bo ;
Qian, Xiaoning .
BMC GENOMICS, 2017, 18
[5]   KBase: The United States Department of Energy Systems Biology Knowledgebase [J].
Arkin, Adam P. ;
Cottingham, Robert W. ;
Henry, Christopher S. ;
Harris, Nomi L. ;
Stevens, Rick L. ;
Maslov, Sergei ;
Dehal, Paramvir ;
Ware, Doreen ;
Perez, Fernando ;
Canon, Shane ;
Sneddon, Michael W. ;
Henderson, Matthew L. ;
Riehl, William J. ;
Murphy-Olson, Dan ;
Chan, Stephen Y. ;
Kamimura, Roy T. ;
Kumari, Sunita ;
Drake, Meghan M. ;
Brettin, Thomas S. ;
Glass, Elizabeth M. ;
Chivian, Dylan ;
Gunter, Dan ;
Weston, David J. ;
Allen, Benjamin H. ;
Baumohl, Jason ;
Best, Aaron A. ;
Bowen, Ben ;
Brenner, Steven E. ;
Bun, Christopher C. ;
Chandonia, John-Marc ;
Chia, Jer-Ming ;
Colasanti, Ric ;
Conrad, Neal ;
Davis, James J. ;
Davison, Brian H. ;
DeJongh, Matthew ;
Devoid, Scott ;
Dietrich, Emily ;
Dubchak, Inna ;
Edirisinghe, Janaka N. ;
Fang, Gang ;
Faria, Jose P. ;
Frybarger, Paul M. ;
Gerlach, Wolfgang ;
Gerstein, Mark ;
Greiner, Annette ;
Gurtowski, James ;
Haun, Holly L. ;
He, Fei ;
Jain, Rashmi .
NATURE BIOTECHNOLOGY, 2018, 36 (07) :566-569
[6]   Directed Evolution: Bringing New Chemistry to Life [J].
Arnold, Frances H. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (16) :4143-4148
[7]   Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels [J].
Atsumi, Shota ;
Hanai, Taizo ;
Liao, James C. .
NATURE, 2008, 451 (7174) :86-U13
[8]   Gram-Scale Synthesis of Chiral Cyclopropane-Containing Drugs and Drug Precursors with Engineered Myoglobin Catalysts Featuring Complementary Stereoselectivity [J].
Bajaj, Priyanka ;
Sreenilayam, Gopeekrishnan ;
Tyagi, Vikas ;
Fasan, Rudi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (52) :16110-16114
[9]   Metabolic engineering of Corynebacterium glutamicum for the production of cis, cis-muconic acid from lignin [J].
Becker, Judith ;
Kuhl, Martin ;
Kohlstedt, Michael ;
Starck, Soeren ;
Wittmann, Christoph .
MICROBIAL CELL FACTORIES, 2018, 17
[10]   Computational Design of Enone-Binding Proteins with Catalytic Activity for the Morita-Baylis-Hillman Reaction [J].
Bjelic, Sinisa ;
Nivon, Lucas G. ;
Celebi-Oelcuem, Nihan ;
Kiss, Gert ;
Rosewall, Carolyn F. ;
Lovick, Helena M. ;
Ingalls, Erica L. ;
Gallaher, Jasmine Lynn ;
Seetharaman, Jayaraman ;
Lew, Scott ;
Montelione, Gaetano Thomas ;
Hunt, John Francis ;
Michael, Forrest Edwin ;
Houk, K. N. ;
Baker, David .
ACS CHEMICAL BIOLOGY, 2013, 8 (04) :749-757