Existence of Three Solutions for a Discrete Anisotropic Boundary Value Problem

被引:2
作者
Moghadam, M. Khaleghi [1 ]
Li, L. [2 ]
Tersian, S. [3 ,4 ]
机构
[1] Sari Agr Sci & Nat Resources Univ, Dept Basic Sci, Sari 578, Iran
[2] Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
[3] Univ Ruse, Dept Math, Ruse, Bulgaria
[4] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
关键词
Discrete nonlinear boundary value problems; Three solutions; Variational methods; Critical point theory; 2ND-ORDER DIFFERENCE-EQUATIONS; P-LAPLACIAN; POSITIVE SOLUTIONS; NONTRIVIAL SOLUTIONS; VARIATIONAL-METHODS; NEUMANN PROBLEMS; MULTIPLICITY;
D O I
10.1007/s41980-018-0073-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence of three solutions for a anisotropic discrete non-linear problem involving p(k)-Laplacian operator with Dirichlet boundary value conditions depending on two parameters is investigated. Variational approach is applied based on a critical point theorem due to Bonanno, Candito and D'Agui.
引用
收藏
页码:1091 / 1107
页数:17
相关论文
共 35 条
[1]   Multiple positive solutions of singular discrete p-Laplacian problems via variational methods [J].
Agarwal, Ravi P. ;
Perera, Kanishka ;
O'Regan, Donal .
ADVANCES IN DIFFERENCE EQUATIONS, 2005, 2005 (02) :93-99
[2]  
[Anonymous], 1985, NONLINEAR FUNCTIONAL
[3]  
Avci M., 2016, J DIFFER EQUATIONS, V2016, P1
[4]   Nontrivial solutions of discrete nonlinear equations with variable exponent [J].
Avci, Mustafa ;
Pankov, Alexander .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 431 (01) :22-33
[5]   Existence of three positive pseudo-symmetric solutions for a one dimensional discrete p-Laplacian [J].
Avery, R ;
Henderson, J .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2004, 10 (06) :529-539
[6]   Nontrivial solutions of boundary value problems of second-order difference equations [J].
Bai, Dingyong ;
Xu, Yuantong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (01) :297-302
[7]   Periodic and Neumann problems for discrete p(.)-Laplacian [J].
Bereanu, Cristian ;
Jebelean, Petru ;
Serban, Calin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 399 (01) :75-87
[8]   Solutions for discrete p-Laplacian periodic boundary value problems via critical point theory [J].
Bian, Li-Hua ;
Sun, Hong-Rui ;
Zhang, Quan-Guo .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2012, 18 (03) :345-355
[9]  
Bonanno G, 2015, ELECTRON J QUAL THEO, P1
[10]  
Bonanno G, 2014, ADV NONLINEAR STUD, V14, P915