Second Maximal Subgroups of a Sylow p-Subgroup and the p-Nilpotency of Finite Groups

被引:0
作者
Xu, Y. [1 ]
Li, X. H. [2 ]
机构
[1] Henan Univ Sci & Technol, Sch Math & Stat, Luoyang, Peoples R China
[2] Soochow Univ, Sch Math Sci, Suzhou, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Normal Subgroup; Finite Group; Simple Group; Maximal Subgroup; Prime Divisor;
D O I
10.1007/s11253-014-0971-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A subgroup H of a group G is said to be weakly s-semipermutable in G if G has a subnormal subgroup T such that HT = G and H a (c) T a parts per thousand currency sign , where is the subgroup of H generated by all subgroups of H that are s-semipermutable in G. The main aim of the paper is to study the p-nilpotency of a group for which every second maximal subgroup of its Sylow p-subgroups is weakly s-semipermutable. Some new results are obtained.
引用
收藏
页码:775 / 780
页数:6
相关论文
共 14 条
[1]  
[Anonymous], 1982, U SERIES MATH
[2]  
Conway J. H., 1985, ATLAS of Finite Groups
[3]   FLAG - TRANSITIVE FINITE SIMPLE-GROUPS [J].
DELANDTSHEER, A .
ARCHIV DER MATHEMATIK, 1986, 47 (05) :395-400
[4]  
Gorenstein D., 1983, CLASSIFICATION FINIT, V1
[5]  
Guo XY, 2001, PUBL MATH-DEBRECEN, V58, P85
[6]  
Huppert B., 1967, Endliche Gruppen I
[7]  
Li X. H., WEAKLY S SE IN PRESS
[8]   3-permutable subgroups and p-nilpotency of finite [J].
Li, YM ;
Li, XH .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2005, 202 (1-3) :72-81
[9]  
Skiba AN, 2005, ALGEBRA DISCRET MATH, P85
[10]   On s-semipermutable maximal and minimal subgroups of Sylow p-subgroups of finite groups [J].
Wang, LF ;
Wang, YM .
COMMUNICATIONS IN ALGEBRA, 2006, 34 (01) :143-149