Virtual-Augmented Reality and Life-Like Neurosurgical Simulator for Training: First Evaluation of a Hands-On Experience for Residents

被引:30
|
作者
Petrone, Salvatore [1 ]
Cofano, Fabio [1 ,2 ]
Nicolosi, Federico [3 ]
Spena, Giannantonio [4 ]
Moschino, Marco [5 ]
Di Perna, Giuseppe [1 ]
Lavorato, Andrea [1 ]
Lanotte, Michele Maria [1 ]
Garbossa, Diego [1 ]
机构
[1] Univ Turin, Dept Neurosci Rita Levi Montalcini, Unit Neurosurg, Turin, Italy
[2] Human Gradenigo, Turin, Italy
[3] Univ Milano Bicocca, Dipartimento Med & Chirurg Neurochirurg, Milan, Italy
[4] Policlin San Matteo, Fdn Ist Ricovero & Cura Carattere Sci IRCCS, Pavia, Italy
[5] UpSurgeOn Srl, Assago, Italy
来源
FRONTIERS IN SURGERY | 2022年 / 9卷
关键词
simulator; training; virtual reality; life-like actuation; brain; neurosurgery; residents;
D O I
10.3389/fsurg.2022.862948
中图分类号
R61 [外科手术学];
学科分类号
摘要
BackgroundIn the recent years, growing interest in simulation-based surgical education has led to various practical alternatives for medical training. More recently, courses based on virtual reality (VR) and three-dimensional (3D)-printed models are available. In this paper, a hybrid (virtual and physical) neurosurgical simulator has been validated, equipped with augmented reality (AR) capabilities that can be used repeatedly to increase familiarity and improve the technical skills in human brain anatomy and neurosurgical approaches. MethodsThe neurosurgical simulator used in this study (UpSurgeOn Box, UpSurgeOn Srl, Assago, Milan) combines a virtual component and a physical component with an intermediate step to provide a hybrid solution. A first reported and evaluated practical experience on the anatomical 3D-printed model has been conducted with a total of 30 residents in neurosurgery. The residents had the possibility to choose a specific approach, focus on the correct patient positioning, and go over the chosen approach step-by-step, interacting with the model through AR application. Next, each practical surgical step on the 3D model was timed and qualitatively evaluated by 3 senior neurosurgeons. Quality and usability-grade surveys were filled out by participants. ResultsMore than 89% of the residents assessed that the application and the AR simulator were very helpful in improving the orientation skills during neurosurgical approaches. Indeed, 89.3% of participants found brain and skull anatomy highly realistic during their tasks. Moreover, workshop exercises were considered useful in increasing the competency and technical skills required in the operating room by 85.8 and 84.7% of residents, respectively. Data collected confirmed that the anatomical model and its application were intuitive, well-integrated, and easy to use. ConclusionThe hybrid AR and 3D-printed neurosurgical simulator could be a valid tool for neurosurgical training, capable of enhancing personal technical skills and competence. In addition, it could be easy to imagine how patient safety would increase and healthcare costs would be reduced, even if more studies are needed to investigate these aspects. The integration of simulators for training in neurosurgery as preparatory steps for the operating room should be recommended and further investigated given their huge potential.
引用
收藏
页数:9
相关论文
共 4 条
  • [1] Development of Concussion Evaluation Tools Using Life-Like Virtual Reality Environments
    Sawires, Yousef
    Huang, Elaine
    Gomes, Adam
    Fernandes, Keegan
    Wang, David
    HCI INTERNATIONAL 2018 - POSTERS' EXTENDED ABSTRACTS, PT II, 2018, 851 : 326 - 333
  • [2] Evaluation of arthroscopic skills with a virtual reality simulator in first-year orthopaedic residents
    P. Walbron
    H. Common
    H. Thomazeau
    F. Sirveaux
    International Orthopaedics, 2020, 44 : 821 - 827
  • [3] Evaluation of arthroscopic skills with a virtual reality simulator in first-year orthopaedic residents
    Walbron, P.
    Common, H.
    Thomazeau, H.
    Sirveaux, F.
    INTERNATIONAL ORTHOPAEDICS, 2020, 44 (05) : 821 - 827
  • [4] The URO Mentor:: development and evaluation of a new computer-based interactive training system for virtual life-like simulation of diagnostic and therapeutic endourological procedures
    Michel, MS
    Knoll, T
    Köhrmann, KU
    Alken, P
    BJU INTERNATIONAL, 2002, 89 (03) : 174 - 177