Enhancing ROS generation and suppressing toxic intermediate production in photocatalytic NO oxidation on O/Ba co-functionalized amorphous carbon nitride

被引:145
作者
Cui, Wen [1 ]
Li, Jieyuan [2 ]
Sun, Yanjuan [1 ]
Wang, Hong [1 ]
Jiang, Guangming [1 ]
Lee, S. C. [3 ]
Dong, Fan [1 ]
机构
[1] Chongqing Technol & Business Univ, Coll Environm & Resources, Chongqing Key Lab Catalysis & New Environm Mat, Chongqing 400067, Peoples R China
[2] Sichuan Univ, Coll Architecture & Environm, Chengdu 610065, Sichuan, Peoples R China
[3] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon nitride; O/Ba co-functionalization; ROS; Photocatalytic NO oxidation; Toxic intermediate; HYDROGEN-PRODUCTION; EFFICIENT; G-C3N4; SEMICONDUCTORS; PURIFICATION; DEGRADATION; PERFORMANCE; POLLUTANTS; CONVERSION; REACTIVITY;
D O I
10.1016/j.apcatb.2018.06.071
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The generation of toxic intermediates during the photocatalytic reaction can result in the accumulation of secondary pollutants and lead to decreased performance. Here, we first designed an O/Ba co-functionalized amorphous carbon nitride (labeled as O-ACN-Ba) by conducting targeted density functional theory calculations for short-range and directional charge transfer in electronic transportation channels. Also, the O-ACN-Ba is synthesized via a one-step in situ co-pyrolysis of urea and BaCO3. The unique electronic structure O-ACN-Ba enables highly enhanced photocatalytic NO removal rate and suppresses the generation of toxic intermediate (NO2). The O and Ba are co-functionalized as a surface electronic trapping adjuster and an interlayer electronic trapping mediator to induce the convergence and localization of intralayer-delocalized electrons. Such internal electronic structure can facilitate the adsorption and activation of NO and O-2, elongate the lifetime of photo generated carriers, and expedite the spatial charge separation to boost significantly the generation of reactive oxygen species, thus suppressing toxic NO2 generation. In addition, the photocatalytic NO conversion pathway on O-ACN-Ba is characterized, and an important reaction intermediate-nitrosyl species Ba-NO delta((+)) is discovered and found to promote the selective conversion of NO to final products (nitrites or nitrates). This work proposes a novel strategy to advance the application of photocatalytic technology for efficient and safe air purification.
引用
收藏
页码:938 / 946
页数:9
相关论文
共 55 条
[1]  
Anders CB, 2018, ENVIRON SCI-NANO, V5, P572, DOI [10.1039/c7en00888k, 10.1039/C7EN00888K]
[2]  
[Anonymous], ANN PHYS
[3]  
Bader R.F.W., 1994, Atoms in Molecules: A Quantum Theory
[4]   Nanoscale design to enable the revolution in renewable energy [J].
Baxter, Jason ;
Bian, Zhixi ;
Chen, Gang ;
Danielson, David ;
Dresselhaus, Mildred S. ;
Fedorov, Andrei G. ;
Fisher, Timothy S. ;
Jones, Christopher W. ;
Maginn, Edward ;
Kortshagen, Uwe ;
Manthiram, Arumugam ;
Nozik, Arthur ;
Rolison, Debra R. ;
Sands, Timothy ;
Shi, Li ;
Sholl, David ;
Wu, Yiying .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (06) :559-588
[5]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[6]   Synergistic photo-thermal catalytic NO purification of MnOx/g-C3N4: Enhanced performance and reaction mechanism [J].
Chen, Peng ;
Dong, Fan ;
Ran, Maoxi ;
Li, Jiarui .
CHINESE JOURNAL OF CATALYSIS, 2018, 39 (04) :619-629
[7]   Highly Efficient Performance and Conversion Pathway of Photocatalytic NO Oxidation on SrO-Clusters@Amorphous Carbon Nitride [J].
Cui, Wen ;
Li, Jieyuan ;
Dong, Fan ;
Sun, Yanjuan ;
Jiang, Guangming ;
Cen, Wanglai ;
Lee, S. C. ;
Wu, Zhongbiao .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (18) :10682-10690
[8]   Steering the interlayer energy barrier and charge flow via bioriented transportation channels in g-C3N4: Enhanced photocatalysis and reaction mechanism [J].
Cui, Wen ;
Li, Jieyuan ;
Cen, Wanglai ;
Sun, Yanjuan ;
Lee, S. C. ;
Dong, Fan .
JOURNAL OF CATALYSIS, 2017, 352 :351-360
[9]   Immobilization of Polymeric g-C3N4 on Structured Ceramic Foam for Efficient Visible Light Photocatalytic Air Purification with Real Indoor Illumination [J].
Dong, Fan ;
Wang, Zhenyu ;
Li, Yuhan ;
Ho, Wing-Kei ;
Lee, S. C. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (17) :10345-10353
[10]   In Situ Construction of g-C3N4/g-C3N4 Metal-Free Heterojunction for Enhanced Visible-Light Photocatalysis [J].
Dong, Fan ;
Zhao, Zaiwang ;
Xiong, Ting ;
Ni, Zilin ;
Zhang, Wendong ;
Sun, Yanjuan ;
Ho, Wing-Kei .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (21) :11392-11401