Depth and Stanley depth of the edge ideals of the strong product of some graphs

被引:5
作者
Iqbal, Zahid [1 ]
Ishaq, Muhammad [1 ]
Binyamin, Muhammad Ahsan [2 ]
机构
[1] Natl Univ Sci & Technol, Sch Nat Sci, Sect H-12, Islamabad 44000, Pakistan
[2] Govt Coll Univ Faisalabad, Dept Math, Faisalabad, Pakistan
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2021年 / 50卷 / 01期
关键词
depth; Stanley depth; Stanley decomposition; monomial ideal; edge ideal; strong product of graphs;
D O I
10.15672/hujms.638033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study depth and Stanley depth of the edge ideals and quotient rings of the edge ideals, associated with classes of graphs obtained by the strong product of two graphs. We consider the cases when either both graphs are arbitrary paths or one is an arbitrary path and the other is an arbitrary cycle. We give exact formula for values of depth and Stanley depth for some subclasses. We also give some sharp upper bounds for depth and Stanley depth in the general cases.
引用
收藏
页码:92 / 109
页数:18
相关论文
共 28 条
[1]   Interval partitions and Stanley depth [J].
Biro, Csaba ;
Howard, David M. ;
Keller, Mitchel T. ;
Trotter, William T. ;
Young, Stephen J. .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (04) :475-482
[2]  
Cimpoeas M., 2015, ROM J MATH COMPUT SC, V5, P70, DOI [10.2478/s11533-009-0037-0, DOI 10.2478/S11533-009-0037-0]
[3]  
Cimpoeas M., 2012, Rom. J. Math. Comput. Sci., V2, P28
[4]   Stanley depth of squarefree Veronese ideals [J].
Cimpoeas, Mircea .
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2013, 21 (03) :67-71
[5]  
*COCOATEAM, COCOA SYST DOING COM
[6]   A non-partitionable Cohen-Macaulay simplicial complex [J].
Duval, Art M. ;
Goeckner, Bennet ;
Klivans, Caroline J. ;
Martin, Jeremy L. .
ADVANCES IN MATHEMATICS, 2016, 299 :381-395
[7]   On the Stanley Depth of Powers of Monomial Ideals [J].
Fakhari, S. A. Seyed .
MATHEMATICS, 2019, 7 (07)
[8]   A lower bound for depths of powers of edge ideals [J].
Fouli, Louiza ;
Morey, Susan .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (03) :829-848
[9]  
Hammack R., 2011, Handbook of product graphs
[10]   How to compute the Stanley depth of a monomial ideal [J].
Herzog, Huergen ;
Vladoiu, Marius ;
Zheng, Xinxian .
JOURNAL OF ALGEBRA, 2009, 322 (09) :3151-3169