Biomolecular screening with encoded porous-silicon photonic crystals

被引:353
作者
Cunin, F
Schmedake, TA
Link, JR
Li, YY
Koh, J
Bhatia, SN
Sailor, MJ
机构
[1] Univ Calif San Diego, Dept Chem & Biochem, Dept 0358, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Bioengn, Dep 0412, La Jolla, CA 92093 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
D O I
10.1038/nmat702
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Strategies to encode or label small particles or beads for use in high-throughput screening and bioassay applications' focus on either spatially differentiated, on-chip arrays2-4 or random distributions of encoded beads5,6. Attempts to encode large numbers of polymeric, metallic or glass beads in random arrays or in fluid suspension have used a variety of entities to provide coded elements (bits) - fluorescent molecules, molecules with specific vibrational signatures7,8, quantum dots9, or discrete metallic layers10. Here we report a method for optically encoding micrometre-sized nanostructured particles of porous silicon. We generate multilayered porous films in crystalline silicon using a periodic electrochemical etch. This results in photonic crystals with well-resolved and narrow optical reflectivity features, whose wavelengths are determined by the etching parameters11. Millions of possible codes can be prepared this way. Micrometre-sized particles are then produced by ultrasonic fracture12, mechanical grinding or by lithographic means. A simple antibody-based bioassay using fluorescently tagged proteins demonstrates the encoding strategy in biologically relevant media.
引用
收藏
页码:39 / 41
页数:3
相关论文
共 33 条
[1]   Dielectric filters made of PS: Advanced performance by oxidation and new layer structures [J].
Berger, MG ;
ArensFischer, R ;
Thonissen, M ;
Kruger, M ;
Billat, S ;
Luth, H ;
Hilbrich, S ;
Theiss, W ;
Grosse, P .
THIN SOLID FILMS, 1997, 297 (1-2) :237-240
[2]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[3]  
Canham LT, 2000, PHYS STATUS SOLIDI A, V182, P521, DOI 10.1002/1521-396X(200011)182:1<521::AID-PSSA521>3.0.CO
[4]  
2-7
[5]   Temperature dependence of the photoluminescence of all-porous-silicon optical microcavities [J].
Cazzanelli, M ;
Vinegoni, C ;
Pavesi, L .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (03) :1760-1764
[6]   Identification of gram negative bacteria using nanoscale silicon microcavities [J].
Chan, S ;
Horner, SR ;
Fauchet, PM ;
Miller, BL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (47) :11797-11798
[7]   Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J].
Chan, WCW ;
Nie, SM .
SCIENCE, 1998, 281 (5385) :2016-2018
[8]   Accessing genetic information with high-density DNA arrays [J].
Chee, M ;
Yang, R ;
Hubbell, E ;
Berno, A ;
Huang, XC ;
Stern, D ;
Winkler, J ;
Lockhart, DJ ;
Morris, MS ;
Fodor, SPA .
SCIENCE, 1996, 274 (5287) :610-614
[9]   A porous silicon optical biosensor: Detection of reversible binding of IgG to a protein A-modified surface [J].
Dancil, KPS ;
Greiner, DP ;
Sailor, MJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (34) :7925-7930
[10]   Barcoded resins: A new concept for polymer-supported combinatorial library self-deconvolution [J].
Fenniri, H ;
Ding, LH ;
Ribbe, AE ;
Zyrianov, Y .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (33) :8151-8152