Flat Gain Broadband Metasurface Antennas

被引:18
作者
Faenzi, Marco [1 ]
Gonzalez-Ovejero, David [1 ]
Maci, Stefano [2 ]
机构
[1] Univ Rennes, IETR Inst Elect & Telecommun Rennes, CNRS, UMR 6164, F-35000 Rennes, France
[2] Univ Siena, Dept Informat Engn & Math, I-53100 Siena, Italy
关键词
Apertures; Bandwidth; Gain; Modulation; Broadband antennas; Broadband communication; circular polarization; impedance boundary conditions (IBCs); leaky waves (LWs); metasurface (MTS) antennas; surface waves (SWs);
D O I
10.1109/TAP.2020.3026476
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Modulated metasurface (MTS) antennas can provide a broadside pencil beam at the frequency where the cylindrical surface wave (SW) wavelength matches the period of the impedance modulation. For modulations with constant period, the mismatch between the SW wavelength and the period imposes a limitation on the gain-bandwidth product. However, this limitation can be overcome by shaping the local period as a function of the radial distance. Doing so, we generate an annular active region on the antenna aperture, where the SW-to-impedance interaction mainly occurs. Such active region moves from the antenna center to the circular rim as the frequency decreases. This article shows that one can optimize the profile of the local periodicity function to obtain broadside pencil beams over large bandwidths, while preserving the flatness of the gain versus frequency response and a good stability of the phase center. The antenna performances so obtained are really unique for flat antennas based on printed technology. Finally, we present a simple formula for the product between average gain and bandwidth, which gradually blends into the already known expression for modulations with constant period. This formula establishes an absolute limit of the gain-bandwidth product, which only depends on the wavelength-normalized antenna radius at the central frequency.
引用
收藏
页码:1942 / 1951
页数:10
相关论文
共 25 条
[1]  
Albani M, 2019, PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), P1303, DOI [10.1109/ICEAA.2019.8879364, 10.1109/iceaa.2019.8879364]
[2]   A Quasi-Direct Method for the Surface Impedance Design of Modulated Metasurface Antennas [J].
Bodehou, Modeste ;
Craeye, Christophe ;
Martini, Enrica ;
Huynen, Isabelle .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2019, 67 (01) :24-36
[3]  
Caminita F, 2014, EUR MICROW CONF, P437, DOI 10.1109/EuMC.2014.6986464
[4]  
Faenzi M., 2018, P 12 EUR C ANT PROP, P483
[5]   Wideband Active Region Metasurface Antennas [J].
Faenzi, Marco ;
Gonzalez-Ovejero, David ;
Maci, Stefano .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2020, 68 (03) :1261-1272
[6]   Metasurface Antennas: New Models, Applications and Realizations [J].
Faenzi, Marco ;
Minatti, Gabriele ;
Gonzalez-Ovejero, David ;
Caminita, Francesco ;
Martini, Enrica ;
Della Giovampaola, Cristian ;
Maci, Stefano .
SCIENTIFIC REPORTS, 2019, 9 (1)
[7]   Scalar and Tensor Holographic Artificial Impedance Surfaces [J].
Fong, Bryan H. ;
Colburn, Joseph S. ;
Ottusch, John J. ;
Visher, John L. ;
Sievenpiper, Daniel F. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2010, 58 (10) :3212-3221
[8]   Additive Manufactured Metal-Only Modulated Metasurface Antennas [J].
Gonzalez-Ovejero, David ;
Chahat, Nacer ;
Sauleau, Ronan ;
Chattopadhyay, Goutam ;
Maci, Stefano ;
Ettorre, Mauro .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2018, 66 (11) :6106-6114
[9]   Multibeam by Metasurface Antennas [J].
Gonzalez-Ovejero, David ;
Minatti, Gabriele ;
Chattopadhyay, Goutam ;
Maci, Stefano .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2017, 65 (06) :2923-2930
[10]   Gaussian Ring Basis Functions for the Analysis of Modulated Metasurface Antennas [J].
Gonzalez-Ovejero, David ;
Maci, Stefano .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (09) :3982-3993