Turbo-assisted direct solar air heater for medium temperature industrial processes using Linear Fresnel Collectors. Assessment on daily and yearly basis

被引:17
作者
Famiglietti, Antonio [1 ]
Lecuona, Antonio [1 ]
Ibarra, Mercedes [2 ,3 ]
Roa, Javier [4 ]
机构
[1] Univ Carlos III Madrid, Dept Ingn Term & Fluidos, Avda Univ 30, Madrid 28911, Spain
[2] Fraunhofer Chile Res Ctr Solar Energy Technol, Santiago 4860, Chile
[3] Univ Nacl Educ Distancia UNED, ETS Ingenieros Ind, C Juan Del Rosal 12, Madrid, Spain
[4] Demede Engn & Res, 47 Nave K Poligono Villaverde, Madrid 28021, Spain
关键词
Solar heat for industrial processes; Linear Fresnel collectors; Direct solar air heating; Solar Brayton cycle; Industrial drying; THERMAL-ENERGY; PERFORMANCE; SYSTEMS; GAS;
D O I
10.1016/j.energy.2021.120011
中图分类号
O414.1 [热力学];
学科分类号
摘要
The study analyzes an innovative concentrating solar thermal system aimed at the direct production of hot air for industrial applications. Air is heated inside linear Fresnel collectors in an open to atmosphere circuit, not requiring the use of a primary heat transfer fluid and a heat exchanger, with their associated cost and maintenance. Matching an automotive turbocharger with the solar field avoids auxiliary energy consumption for pumping the airflow. The detailed quasi-steady numerical model implemented, including commercial collector and turbocharger technical features, allows to scrutinize the daily and yearly operating time profile of a medium scale plant with a 633.6 m(2) solar field. Considering the typical meteorological year of the selected location (Madrid, Spain), the numerical results indicate that hot air is provided at a remarkable quasi-constant temperature between 300 degrees C and 400 degrees C despite the solar variations, delivering 330 MW h per year without overheating the receiver evacuated tubes. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:17
相关论文
共 33 条
[1]   Progress in the design and the applications of linear Fresnel reflectors - A critical review [J].
Bellos, Evangelos .
THERMAL SCIENCE AND ENGINEERING PROGRESS, 2019, 10 :112-137
[2]   Concrete thermal energy storage for linear Fresnel collectors: Exploiting the South Mediterranean's solar potential for agri-food processes [J].
Buscemi, A. ;
Panno, D. ;
Ciulla, G. ;
Beccali, M. ;
Lo Brano, V. .
ENERGY CONVERSION AND MANAGEMENT, 2018, 166 :719-734
[3]   A Method to Estimate the Performance Map of a Centrifugal Compressor Stage [J].
Casey, Michael ;
Robinson, Chris .
JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2013, 135 (02)
[4]  
Duffie JA, 2013, SOLAR ENGINEERING OF THERMAL PROCESSES, 4TH EDITION, P1, DOI 10.1002/9781118671603
[5]   Guidelines for CSP yield analysis - optical losses of line focusing systems; definitions, sensitivity analysis and modeling approaches [J].
Eck, M. ;
Hirsch, T. ;
Feldhoff, J. F. ;
Kretschmann, D. ;
Dersch, J. ;
Morales, A. Gavilan ;
Gonzalez-Martinez, L. ;
Bachelier, C. ;
Platzer, W. ;
Riffelmann, K. -J. ;
Wagner, M. .
PROCEEDINGS OF THE SOLARPACES 2013 INTERNATIONAL CONFERENCE, 2014, 49 :1318-1327
[6]  
Eriksson L., 2008, Oil Gas Sci. Technol, V63, P9, DOI [10.2516/ogst, DOI 10.2516/OGST]
[7]  
Famiglietti A, 2020, VIABILITY ANAL, V169, DOI [10.1016/j.applthermaleng.2020.114914, DOI 10.1016/J.APPLTHERMALENG.2020.114914]
[8]   A compact and accurate empirical model for turbine mass flow characteristics [J].
Fang, Xiande ;
Dai, Qiumin ;
Yin, Yanxin ;
Xu, Yu .
ENERGY, 2010, 35 (12) :4819-4823
[9]   Solar process heat in industrial systems - A global review [J].
Farjana, Shahjadi Hisan ;
Huda, Nazmul ;
Mahmud, M. A. Parvez ;
Saidur, R. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 :2270-2286
[10]  
Forristall R., 2003, Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver, P164