EVERY COPRIME LINEAR GROUP ADMITS A BASE OF SIZE TWO

被引:20
作者
Halasi, Zoltan [1 ,2 ]
Podoski, Karoly [3 ,4 ]
机构
[1] Univ Debrecen, Inst Math, POB 12, H-4010 Debrecen, Hungary
[2] Eotvos Lorand Univ, Dept Algebra & Number Theory, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
[3] Coll Finance & Accountancy, Budapest Business Sch, Buzogany St 10-12, H-1149 Budapest, Hungary
[4] Hungarian Acad Sci, Alfrer Renyi Inst Math, Realtanoda U 13-15, H-1053 Budapest, Hungary
关键词
Coprime linear group; base size; regular partition; PERMUTATION-GROUPS; REGULAR ORBITS; SET;
D O I
10.1090/tran/6544
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a linear group acting faithfully on a finite vector space V and assume that (vertical bar G vertical bar, vertical bar V vertical bar) = 1. In this paper we prove that G admits a base of size two and that this estimate is sharp. This generalizes and strengthens several former results concerning base sizes of coprime linear groups. As a direct consequence, we answer a question of I. M. Isaacs in the affirmative.
引用
收藏
页码:5857 / 5887
页数:31
相关论文
共 35 条
  • [1] [Anonymous], 2007, GAP GROUPS ALG PROGR
  • [2] Aschbacher M., 2000, FINITE GROUP THEORY, V10
  • [3] Benbenishty C., 2005, THESIS HEBREW U JERU
  • [4] Base sizes for sporadic simple groups
    Burness, Timothy C.
    O'Brien, E. A.
    Wilson, Robert A.
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2010, 177 (01) : 307 - 333
  • [5] Burness Timothy C., 2009, P LOND MATH SOC, V98, P116, DOI [10.1112/plms/pdn024, DOI 10.1112/PLMS/PDN024]
  • [6] Burness Timothy C., 2007, J LOND MATH SOC, V75, P545, DOI [10.1112/jlms/jdm033, DOI 10.1112/JLMS/JDM033]
  • [7] Burness Timothy C., 2011, B LOND MATH SOC, V43, P386, DOI [10.1112/blms/bdq123, DOI 10.1112/BLMS/BDQ123.MR2781219]
  • [8] Burness Timothy C., 2015, T AM MATH SOC, V367, P5633, DOI [10.1090/S0002-9947-2015-06224-2, DOI 10.1090/S0002-9947-2015-06224-2]
  • [9] Conway J. H., 1985, ATLAS FINITE GROUPS
  • [10] Orbits of permutation groups on the power set
    Dolfi, S
    [J]. ARCHIV DER MATHEMATIK, 2000, 75 (05) : 321 - 327