Approximation algorithm for minimum power partial multi-coverage in wireless sensor networks

被引:17
作者
Ran, Yingli [1 ]
Huang, Xiaohui [1 ]
Zhang, Zhao [1 ]
Du, Ding-Zhu [2 ]
机构
[1] Zhejiang Normal Univ, Coll Math & Comp Sci, Jinhua 321004, Zhejiang, Peoples R China
[2] Univ Texas Dallas, Dept Comp Sci, Richardson, TX 75080 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Minimum power partial multi cover; Wireless sensor networks; Approximation algorithm; PTAS; SCHEMES; SUM;
D O I
10.1007/s10898-021-01033-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we consider the wireless sensor network in which the power of each sensor is adjustable. Given a set of sensors and a set of targets, we study a problem of minimizing the total power such that the coverage of targets meets partial multi-cover requirement, that is, there are at least a given number of targets each covered by a given number of sensors (this number is called the covering requirement for the target). This is called the minimum power partial multi-cover problem (MinPowerPMC) in a wireless sensor network. Under the assumption that the covering requirements for all targets are upper bounded by a constant, we design the first PTAS for the MinPowerPMC problem, that is, for any epsilon > 0, a polynomial-time (1 + epsilon)-approximation.
引用
收藏
页码:661 / 677
页数:17
相关论文
共 36 条
[1]   MULTI COVER OF A POLYGON MINIMIZING THE SUM OF AREAS [J].
Abu-Affash, A. Karim ;
Carmi, Paz ;
Katz, Matthew J. ;
Morgenstern, Gila .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2011, 21 (06) :685-698
[2]  
Alt H., 2006, Proceedings of the Twenty-Second Annual Symposium on Computational Geometry (SCG'06), P449, DOI 10.1145/1137856.1137922
[3]  
Bansal N, 2012, LECT NOTES COMPUT SC, V7501, P145, DOI 10.1007/978-3-642-33090-2_14
[4]   A note on multicovering with disks [J].
Bar-Yehuda, Reuven ;
Rawitz, Dror .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2013, 46 (03) :394-399
[5]  
Bhowmick S., 2015, J COMPUT GEOM, V6, P220
[6]   Fault-Tolerant Covering Problems in Metric Spaces [J].
Bhowmick, Santanu ;
Inamdar, Tanmay ;
Varadarajan, Kasturi .
ALGORITHMICA, 2021, 83 (02) :413-446
[7]  
Bhowmick S, 2013, PROCEEDINGS OF THE TWENTY-NINETH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SOCG'13), P243
[8]  
BILO V, 2005, EUR S ALG ESA, P460
[9]   ALMOST OPTIMAL SET COVERS IN FINITE VC-DIMENSION [J].
BRONNIMANN, H ;
GOODRICH, MT .
DISCRETE & COMPUTATIONAL GEOMETRY, 1995, 14 (04) :463-479
[10]  
Brualdi R.A., 2009, Introductory Combinatorics