Hermite interpolation on the unit sphere and limits of Lagrange projectors

被引:7
作者
Phung Van Manh [1 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math, 136 Xuan Thuy St, Hanoi, Vietnam
关键词
Lagrange interpolation; Hermite interpolation; interpolation on the sphere; POLYNOMIAL INTERPOLATION; POINTS;
D O I
10.1093/imanum/draa026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct new Hermite and Lagrange interpolation schemes on the unit sphere in R-3. We give Newton-type formulas for interpolation polynomials and use them to show that the Hermite projectors are the limits of Lagrange projectors when interpolation points coalesce.
引用
收藏
页码:1441 / 1464
页数:24
相关论文
共 17 条
[1]   A continuity property of multivariate Lagrange interpolation [J].
Bloom, T ;
Calvi, JP .
MATHEMATICS OF COMPUTATION, 1997, 66 (220) :1561-1577
[2]  
Bojanov B., 1993, Spline functions and multivariate interpolations, DOI DOI 10.1007/978-94-015-8169-1
[3]   ON CERTAIN CONFIGURATIONS OF POINTS IN RN WHICH ARE UNISOLVENT FOR POLYNOMIAL INTERPOLATION [J].
BOS, L .
JOURNAL OF APPROXIMATION THEORY, 1991, 64 (03) :271-280
[4]   Limiting values under scaling of the Lebesgue function for polynomial interpolation on spheres [J].
Bos, L ;
De Marchi, S .
JOURNAL OF APPROXIMATION THEORY, 1999, 96 (02) :366-377
[5]  
Bos L, 2008, ANN SCUOLA NORM-SCI, V7, P545
[6]   Multipoint Taylor interpolation [J].
Bos, Len ;
Calvi, Jean-Paul .
CALCOLO, 2008, 45 (01) :35-51
[7]   Can we define Taylor polynomials on algebraic curves? [J].
Calvi, Jean-Paul ;
Phung Van .
Annales Polonici Mathematici, 2016, 118 (01) :1-24
[8]   Polynomial interpolation on the unit sphere II [J].
Castell, Wolfgang zu ;
Fernandez, Noemi Lain ;
Xu, Yuan .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2007, 26 (1-3) :155-171
[9]  
de Boor C., 2005, SURV APPROX THEORY, V1, P46
[10]  
Phung VM, 2017, ACTA MATH HUNG, V153, P289, DOI 10.1007/s10474-017-0760-0