ON THE GROWTH OF EIGENFUNCTION AVERAGES: MICROLOCALIZATION AND GEOMETRY

被引:10
作者
Canzani, Yaiza [1 ]
Galkowski, Jeffrey [2 ]
机构
[1] Univ N Carolina, Dept Math, Chapel Hill, NC 27515 USA
[2] UCL, Dept Math, London, England
基金
美国国家科学基金会;
关键词
RIEMANNIAN-MANIFOLDS; FOCAL POINTS; SUP-NORMS; INTEGRALS; QUASIMODES; SURFACES;
D O I
10.1215/00127094-2019-0020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, g) be a smooth, compact Riemannian manifold, and let {phi(h)} be an L-2- normalized sequence of Laplace eigenfunctions, -h(2) Delta g phi(h) = phi(h). Given a smooth submanifold H subset of M of codimension k >= 1, we find conditions on the pair ({phi(h)}, H) for which vertical bar integral(H)phi(h) d sigma(H)vertical bar = o(h (1-k/2)), h -> 0(+). One such condition is that the set of conormal directions to H that are recurrent has measure 0. In particular, we show that the upper bound holds for any H if (M, g) is a surface with Anosov geodesic flow or a manifold of constant negative curvature. The results are obtained by characterizing the behavior of the defect measures of eigenfunctions with maximal averages.
引用
收藏
页码:2991 / 3055
页数:65
相关论文
共 34 条
  • [1] [Anonymous], 1995, ENCY MATH APPL
  • [2] Anosov D. V., 1967, T MAT I STEKLOVA, V90
  • [3] Avakumovic, 1956, MATH Z, V65, P327
  • [4] WAVE-EQUATION ON A COMPACT RIEMANNIAN MANIFOLD WITHOUT CONJUGATE POINTS
    BERARD, PH
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1977, 155 (03) : 249 - 276
  • [5] Brin M., 2002, INTRO DYNAMICAL SYST, DOI 10.1017/CBO9780511755316
  • [6] Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds
    Burq, N.
    Gerard, P.
    Tzvetkov, N.
    [J]. DUKE MATHEMATICAL JOURNAL, 2007, 138 (03) : 445 - 486
  • [7] Averages of Eigenfunctions Over Hypersurfaces
    Canzani, Yaiza
    Galkowski, Jeffrey
    Toth, John A.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 360 (02) : 619 - 637
  • [8] Chen XH, 2015, P AM MATH SOC, V143, P151
  • [9] Dyatlov S., 2019, GRAD STUD MATH, V200
  • [10] Eberlein Patrick, 1973, J. Differ. Geom., V8, P437