Coherent control of open quantum dynamical systems

被引:81
作者
Altafini, C [1 ]
机构
[1] SISSA, Int Sch Adv Studies, I-34014 Trieste, Italy
来源
PHYSICAL REVIEW A | 2004年 / 70卷 / 06期
关键词
D O I
10.1103/PhysRevA.70.062321
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A systematic analysis of the behavior of the quantum Markovian master equation driven by coherent control fields is proposed. Its irreversible character is formalized using control-theoretic notions and the sets of states that can be reached via coherent controls are described. The analysis suggests to what extent (and how) it is possible to counteract the effect of dissipation.
引用
收藏
页码:062321 / 1
页数:8
相关论文
共 25 条
[1]  
Alicki R., 2007, Volume 717 of Lecture Notes in Physics, V717
[2]   Controllability properties for finite dimensional quantum Markovian master equations [J].
Altafini, C .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (06) :2357-2372
[3]  
[Anonymous], DIFFERENTIAL GEOMETR
[4]   Universal simulation of Markovian quantum dynamics [J].
Bacon, Dave ;
Childs, Andrew M. ;
Chuang, Isaac L. ;
Kempe, Julia ;
Leung, Debbie W. ;
Zhou, Xinlan .
Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (06) :1-062302
[5]   CONTROLLABILITY OF BILINEAR-SYSTEMS [J].
BONNARD, B .
MATHEMATICAL SYSTEMS THEORY, 1981, 15 (01) :79-92
[6]   TRANSITIVITY OF FAMILIES OF INVARIANT VECTOR-FIELDS ON THE SEMIDIRECT PRODUCTS OF LIE-GROUPS [J].
BONNARD, B ;
JURDJEVIC, V ;
KUPKA, I ;
SALLET, G .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 271 (02) :525-535
[7]   DETERMINATION OF THE TRANSITIVITY OF BILINEAR SYSTEMS [J].
BOOTHBY, WM ;
WILSON, EN .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1979, 17 (02) :212-221
[8]   TRANSITIVITY PROBLEM FROM CONTROL-THEORY [J].
BOOTHBY, WM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1975, 17 (02) :296-307
[9]  
Ernst R, 1987, PRINCIPLES MAGNETIC
[10]  
FACCHI P, QUANTPH0403205