Oscillation of certain higher-order neutral partial functional differential equations

被引:1
作者
Li, Wei Nian [1 ]
Sheng, Weihong [1 ]
机构
[1] Binzhou Univ, Dept Math, Binzhou 256603, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Oscillation; Partial functional differential equation; Robin boundary condition; SYSTEMS;
D O I
10.1186/s40064-016-2111-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we study the oscillation of certain higher-order neutral partial functional differential equations with the Robin boundary conditions. Some oscillation criteria are established. Two examples are given to illustrate the main results in the end of this paper.
引用
收藏
页数:8
相关论文
共 12 条
[1]   Forced oscillation of solutions of certain hyperbolic equations of neutral type [J].
Bainov, D ;
Baotong, C ;
Minchev, E .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 72 (02) :309-318
[2]   OSCILLATION OF CERTAIN NEUTRAL DELAY PARABOLIC EQUATIONS [J].
FU, XL ;
ZHUANG, W .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 191 (03) :473-489
[3]  
[高正晖 GAO Zhenghui], 2008, [应用数学, Mathematics Applicata], V21, P399
[4]   Oscillation tests for certain systems of parabolic differential equations with neutral type [J].
Li, Wei Nian ;
Han, Maoan .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2006, 36 (04) :1285-1300
[5]   Oscillation properties for systems of hyperbolic differential equations of neutral type [J].
Li, WN .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 248 (02) :369-384
[6]   Oscillation of solutions of neutral partial functional differential equations [J].
Li, WN ;
Cui, BT .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 234 (01) :123-146
[7]  
Li WN, 2001, APPL MATH COMPUT, V122, P95, DOI 10.1016/S0096-3003(00)00024-2
[8]   Oscillation for a class of odd-order delay parabolic differential equations [J].
Ouyang, ZG ;
Zhou, SF ;
Yin, FQ .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 175 (02) :305-319
[9]   Oscillation of a class of partial functional population model [J].
Wang, Changyou ;
Wang, Shu ;
Yan, Xiangping ;
Li, Linrui .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 368 (01) :32-42
[10]  
Wu J., 1996, THEORY APPL PARTIAL