On the local times of transient random walks

被引:3
|
作者
Csaki, Endre
Foeldes, Antonia
Revesz, Pal
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1364 Budapest, Hungary
[2] CUNY Coll Staten Isl, Dept Math, Staten Isl, NY 10314 USA
[3] Vienna Univ Technol, Inst Stat & Wahrscheinlichkeitstheorie, A-1040 Vienna, Austria
关键词
transient random walk; local time; occupation time; strong theorems;
D O I
10.1007/s10440-007-9113-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the properties of the local and occupation times of certain transient random walks. First, our recent results concerning simple symmetric random walk in higher dimension are surveyed, then we start to establish similar results for simple asymmetric random walk on the line.
引用
收藏
页码:147 / 158
页数:12
相关论文
共 50 条
  • [1] On the Local Times of Transient Random Walks
    Endre Csáki
    Antónia Földes
    Pál Révész
    Acta Applicandae Mathematicae, 2007, 96 : 147 - 158
  • [2] HITTING TIMES FOR TRANSIENT RANDOM WALKS ON GROUPS
    PORT, SC
    STONE, CJ
    JOURNAL OF MATHEMATICS AND MECHANICS, 1968, 17 (12): : 1117 - &
  • [3] Universality of local times of killed and reflected random walks
    Denisov, Denis
    Wachtel, Vitali
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2016, 21
  • [4] Extremes of local times for simple random walks on symmetric trees
    Abe, Yoshihiro
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [5] On the law of the iterated logarithm for local times of recurrent random walks
    Chen, X
    HIGH DIMENSIONAL PROBABILITY II, 2000, 47 : 249 - 259
  • [6] MOST TRANSIENT RANDOM WALKS HAVE INFINITELY MANY CUT TIMES
    Halberstam, Noah
    Hutchcroft, Tom
    ANNALS OF PROBABILITY, 2023, 51 (05): : 1932 - 1962
  • [7] INVARIANCE PRINCIPLES FOR LOCAL TIMES AT THE MAXIMUM OF RANDOM WALKS AND LEVY PROCESSES
    Chaumont, L.
    Doney, R. A.
    ANNALS OF PROBABILITY, 2010, 38 (04): : 1368 - 1389
  • [8] Statistics of occupation times and connection to local properties of nonhomogeneous random walks
    Radice, Mattia
    Onofri, Manuele
    Artuso, Roberto
    Pozzoli, Gaia
    PHYSICAL REVIEW E, 2020, 101 (04)
  • [9] Upper tails for intersection local times of random walks in supercritical dimensions
    Chen, Xia
    Morters, Peter
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 79 : 186 - 210
  • [10] Exponential asymptotics for intersection local times of stable processes and random walks
    Chen, X
    Rosen, J
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (05): : 901 - 928