Metrics to evaluate the performance of auto-segmentation for radiation treatment planning: A critical review

被引:120
作者
Sherer, Michael, V [1 ]
Lin, Diana [2 ]
Elguindi, Sharif [3 ]
Duke, Simon [4 ]
Tan, Li-Tee [4 ]
Cacicedo, Jon [5 ]
Dahele, Max [6 ]
Gillespie, Erin F. [2 ]
机构
[1] Univ Calif San Diego, Dept Radiat Med & Appl Sci, La Jolla, CA 92093 USA
[2] Mem Sloan Kettering Canc Ctr, Dept Radiat Oncol, 1275 York Ave,Box 22, New York, NY 10065 USA
[3] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10065 USA
[4] Cambridge Univ Hosp, Dept Oncol, Cambridge, England
[5] Cruces Univ Hosp, Dept Radiat Oncol, BioCruces Hlth Res Inst, Osakidetza, Barakaldo, Spain
[6] Univ Amsterdam, Dept Radiat Oncol, Med Ctr, Amsterdam, Netherlands
基金
美国医疗保健研究与质量局;
关键词
Auto-segmentation; Contouring; Treatment planning; Quality assurance; TARGET VOLUME DELINEATION; ATLAS-BASED SEGMENTATION; HEAD-AND-NECK; QUALITY-ASSURANCE; AUTOMATIC SEGMENTATION; IMAGE SEGMENTATION; INTEROBSERVER VARIABILITY; TOMOGRAPHY IMAGES; RADIOTHERAPY; CANCER;
D O I
10.1016/j.radonc.2021.05.003
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Advances in artificial intelligence-based methods have led to the development and publication of numerous systems for auto-segmentation in radiotherapy. These systems have the potential to decrease contour variability, which has been associated with poor clinical outcomes and increased efficiency in the treatment planning workflow. However, there are no uniform standards for evaluating auto-segmentation platforms to assess their efficacy at meeting these goals. Here, we review the most frequently used evaluation techniques which include geometric overlap, dosimetric parameters, time spent contouring, and clinical rating scales. These data suggest that many of the most commonly used geometric indices, such as the Dice Similarity Coefficient, are not well correlated with clinically meaningful endpoints. As such, a multi-domain evaluation, including composite geometric and/or dosimetric metrics with physicianreported assessment, is necessary to gauge the clinical readiness of auto-segmentation for radiation treatment planning. CO 2021 Elsevier B.V. All rights reserved. Radiotherapy and Oncology 160 (2021) 185-191
引用
收藏
页码:185 / 191
页数:7
相关论文
共 75 条
  • [41] Nikolov S., 2018, ABS180904430 CORR
  • [42] Radiotherapy Protocol Deviations and Clinical Outcomes: A Meta-analysis of Cooperative Group Clinical Trials
    Ohri, Nitin
    Shen, Xinglei
    Dicker, Adam P.
    Doyle, Laura A.
    Harrison, Amy S.
    Showalter, Timothy N.
    [J]. JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2013, 105 (06): : 387 - 393
  • [43] Magnetic Resonance Imaging-Guided Adaptive Radiation Therapy: A "Game Changer" for Prostate Treatment?
    Pathmanathan, Angela U.
    van As, Nicholas J.
    Kerkmeijer, Linda G. W.
    Christodouleas, John
    Lawton, Colleen A. F.
    Vesprini, Danny
    van der Heide, Uulke A.
    Frank, Steven J.
    Nill, Simeon
    Oelfke, Uwe
    van Herk, Marcel
    Li, X. Allen
    Mittauer, Kathryn
    Ritter, Mark
    Choudhury, Ananya
    Tree, Alison C.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 100 (02): : 361 - 373
  • [44] Critical Impact of Radiotherapy Protocol Compliance and Quality in the Treatment of Advanced Head and Neck Cancer: Results From TROG 02.02
    Peters, Lester J.
    O'Sullivan, Brian
    Giralt, Jordi
    Fitzgerald, Thomas J.
    Trotti, Andy
    Bernier, Jacques
    Bourhis, Jean
    Yuen, Kally
    Fisher, Richard
    Rischin, Danny
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2010, 28 (18) : 2996 - 3001
  • [45] Tissue segmentation of computed tomography images using a Random Forest algorithm: a feasibility study
    Polan, Daniel F.
    Brady, Samuel L.
    Kaufman, Robert A.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (17) : 6553 - 6569
  • [46] Human-Computer Interaction in Radiotherapy Target Volume Delineation: A Prospective, Multi-institutional Comparison of User Input Devices
    Rasch, Coen R. N.
    Duppen, Joop C.
    Steenbakkers, Roel J.
    Baseman, Daniel
    Eng, Tony Y.
    Fuller, Clifton D.
    Harris, Anna M.
    Jones, William E., III
    Li, Ying
    Maani, Elizabeth
    Nguyen, Dominic D.
    Swanson, Gregory P.
    Bicquart, Celine
    Gagnon, Patrick
    Holland, John
    McDonald, Tasha
    Thomas, Charles R., Jr.
    Wang, Samuel J.
    Fuss, Martin
    Sharp, Hadley J.
    Ludwig, Michelle
    Rosenthal, David I.
    Diaz, Aidnag Z.
    Demandante, Carlo G. N.
    Shapiro, Ronald
    [J]. JOURNAL OF DIGITAL IMAGING, 2011, 24 (05) : 794 - 803
  • [47] AUTOMATIC SEGMENTATION OF WHOLE BREAST USING ATLAS APPROACH AND DEFORMABLE IMAGE REGISTRATION
    Reed, Valerie K.
    Woodward, Wendy A.
    Zhang, Lifei
    Strom, Eric A.
    Perkins, George H.
    Tereffe, Welela
    Oh, Julia L.
    Yu, T. Kuan
    Bedrosian, Isabelle
    Whitman, Gary J.
    Buchholz, Thomas A.
    Dong, Lei
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2009, 73 (05): : 1493 - 1500
  • [48] Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocol microscopy images of bee brains
    Rohlfing, T
    Brandt, R
    Menzel, R
    Maurer, CR
    [J]. NEUROIMAGE, 2004, 21 (04) : 1428 - 1442
  • [49] Radiotherapy quality assurance review in a multi-center randomized trial of limited-disease small cell lung cancer: the Japan Clinical Oncology Group (JCOG) trial 0202
    Sanuki-Fujimoto, Naoko
    Ishikura, Satoshi
    Hayakawa, Kazushige
    Kubota, Kaoru
    Nishiwaki, Yutaka
    Tamura, Tomohide
    [J]. RADIATION ONCOLOGY, 2009, 4
  • [50] Uncertainties in target volume delineation in radiotherapy - are they relevant and what can we do about them?
    Segedin, Barbara
    Petric, Primoz
    [J]. RADIOLOGY AND ONCOLOGY, 2016, 50 (03) : 254 - 262