Electromagnetic Deep Learning Technology for Radar Target Identification

被引:0
作者
Alzahed, Abdelelah M. [1 ]
Antar, Yahia M. M. [1 ]
Mikki, Said M. [2 ]
机构
[1] Royal Mil Coll Canada, Dept Elect & Comp Engn, Kingston, ON, Canada
[2] Univ New Haven, Dept Elect & Comp Engn & Comp Sci, West Haven, CT USA
来源
2019 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND USNC-URSI RADIO SCIENCE MEETING | 2019年
关键词
D O I
10.1109/apusncursinrsm.2019.8888736
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a new electromagnetic deep learning technology to radar target identification implemented via a novel spatial singularity expansion method (S-SEM). The proposed approach utilizes a recently-found radiation function that holds the spatial parameters of targets defined as the surface current and the geometrical details. Through EM machine learning, an estimation of these parameters is performed in a form of inverse problems for a single wire system. The estimated parameters, which are the S-SEM data, length and orientation, are validated and compared with numerical results obtained from the EM solver where an excellent agreement is achieved.
引用
收藏
页码:579 / 580
页数:2
相关论文
共 50 条
[21]   Simulation of Urban Automotive Radar Measurements for Deep Learning Target Detection [J].
Wengerter, Thomas ;
Perez, Rodrigo ;
Biebl, Erwin ;
Worms, Josef ;
O'Hagan, Daniel .
2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, :309-314
[22]   Deep Reinforcement Learning-Based Radar Network Target Assignment [J].
Meng, Fanqing ;
Tian, Kangsheng ;
Wu, Changfei .
IEEE SENSORS JOURNAL, 2021, 21 (14) :16315-16327
[23]   Fast Inversion of Subsurface Target Electromagnetic Induction Response With Deep Learning [J].
Li, Shiyan ;
Zhang, Xiaojuan ;
Xing, Kang ;
Zheng, Yaoxin .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[24]   TARGET IDENTIFICATION BY MEANS OF RADAR [J].
DALLEMESE, E ;
MANCIANTI, M ;
VERRAZZANI, L ;
CANTONI, A .
MICROWAVE JOURNAL, 1984, 27 (12) :85-&
[25]   TARGET IDENTIFICATION TECHNOLOGY OF MILLIMETER-WAVE RADAR BASED ON FEATURE TEMPLATE [J].
Zhai Qinglin ;
Ouyang Guohua ;
Hu Jianli .
2022 19TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2022,
[26]   Deep Learning for Radar [J].
Mason, Eric ;
Yonel, Bariscan ;
Yazici, Birsen .
2017 IEEE RADAR CONFERENCE (RADARCONF), 2017, :1703-1708
[27]   Radar based deep learning technology for loudspeaker faults detection and classification [J].
Izzo, A. ;
Clemente, C. ;
Ausiello, L. ;
Soraghan, J. J. .
2020 IEEE RADAR CONFERENCE (RADARCONF20), 2020,
[28]   RADAR SYSTEMS AND ELECTROMAGNETIC SCATTERING TECHNOLOGY [J].
MCILVENNA, J .
MICROWAVE JOURNAL, 1981, 24 (10) :60-&
[29]   Marine Distributed Radar Signal Identification and Classification Based on Deep Learning [J].
Liu, Chang ;
Antypenko, Ruslan ;
Sushko, Iryna ;
Zakharchenko, Oksana ;
Wang, Ji .
TRAITEMENT DU SIGNAL, 2021, 38 (05) :1541-1548
[30]   SAR Target Classification Based on Radar Image Luminance Analysis by Deep Learning [J].
Zhu, Hongliang ;
Wang, Weiye ;
Leung, Rocky .
IEEE SENSORS LETTERS, 2020, 4 (03)