Comparison of convolutional neural network in Python']Python environment on CPU and GPU

被引:0
作者
Sykora, Peter [1 ]
Sinko, Martin [1 ]
Vrskova, Roberta [1 ]
Kamencay, Patrik [1 ]
Hudec, Robert [1 ]
机构
[1] Univ Zilina, Fac Elect Engn & Informat Technol, Dept Multimedia & Informat Commun Technol, Zilina, Slovakia
来源
13TH INTERNATIONAL CONFERENCE ON ELEKTRO (ELEKTRO 2020) | 2020年
关键词
machine learning; artificial neural networks; classification; AlexNet; ResNet; MNIST; !text type='Python']Python[!/text;
D O I
10.1109/elektro49696.2020.9130321
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
the comparison of the convolutional neural network in Python environment is presented in this paper. The Anaconda platform provides free and easy to use tools for Python scripting language. After introduction to the environment, the experiment is described. First the used neural network architectures are shown. Used databases are defined later. Finally, the results are presented. The testing was done to determine the computational time needed for these architectures.
引用
收藏
页数:4
相关论文
共 10 条
[1]  
Chockwanich Navaporn, 2019, 2019 21st International Conference on Advanced Communication Technology (ICACT), P654, DOI 10.23919/ICACT.2019.8701969
[2]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[3]  
Kabeya Python, 2011, 2011 19th Mediterranean Conference on Control & Automation (MED 2011), P910
[4]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[5]  
Massiris MM, 2017, 2017 XLIII LATIN AMERICAN COMPUTER CONFERENCE (CLEI)
[6]  
Mohaparata R.K., 2015, 2015 International Conference on Computing, Communication and Security (ICCCS),IEEE, P1
[7]  
Mudau T., 2018, 2018 IST AFR WEEK C, P1
[8]  
Ouyang CS, 2016, PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON CYBERNETICS, ROBOTICS AND CONTROL (CRC), P91, DOI [10.1109/CRC.2016.11, 10.1109/CRC.2016.028]
[9]   Pruning Method in The Architecture of Extreme Learning Machines Based on Partial Least Squares Regression [J].
Vitor, P. .
IEEE LATIN AMERICA TRANSACTIONS, 2018, 16 (12) :2864-2871
[10]  
Zhang ZJ, 2016, INT CONF SOFTW ENG, P675, DOI 10.1109/ICSESS.2016.7883158