Mixed vs Stable Anti-Yetter-Drinfeld Contramodules

被引:1
作者
Shapiro, Ilya [1 ]
机构
[1] Univ Windsor, Dept Math & Stat, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Hopf algebras; homological algebra; Taft algebras; HOPF-CYCLIC HOMOLOGY; COHOMOLOGY; ALGEBRAS;
D O I
10.3842/SIGMA.2021.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We examine the cyclic homology of the monoidal category of modules over a finite dimensional Hopf algebra, motivated by the need to demonstrate that there is a difference between the recently introduced mixed anti-Yetter-Drinfeld contramodules and the usual stable anti-Yetter-Drinfeld contramodules. Namely, we show that Sweedler's Hopf algebra provides an example where mixed complexes in the category of stable anti-Yetter-Drinfeld contramodules (previously studied) are not equivalent, as differential graded categories to the category of mixed anti-Yetter-Drinfeld contramodules (recently introduced).
引用
收藏
页数:10
相关论文
共 22 条
  • [1] Complete reducibility theorems for modules over pointed Hopf algebras
    Andruskiewitsch, Nicolas
    Radford, David
    Schneider, Hans-Juergen
    [J]. JOURNAL OF ALGEBRA, 2010, 324 (11) : 2932 - 2970
  • [2] Andruskiewitsch Nicolas, 2014, Math. Lect. Peking Univ., P1
  • [3] Spherical categories
    Barrett, JW
    Westbury, BW
    [J]. ADVANCES IN MATHEMATICS, 1999, 143 (02) : 357 - 375
  • [4] INTEGRAL TRANSFORMS AND DRINFELD CENTERS IN DERIVED ALGEBRAIC GEOMETRY
    Ben-Zvi, David
    Francis, John
    Nadler, David
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (04) : 909 - 966
  • [5] Brzezinski T., 2011, ASPECTS MATH E, VE41, P1
  • [6] Cyclic cohomology and Hopf algebras
    Connes, A
    Moscovici, H
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1999, 48 (01) : 97 - 108
  • [7] Drinfeld V. G., 1987, P INT C MATH BERK 19, V1, P798
  • [8] Hopf-cyclic homology and cohomology with coefficients
    Hajac, PM
    Khalkhali, M
    Rangipour, B
    Sommerhäuser, Y
    [J]. COMPTES RENDUS MATHEMATIQUE, 2004, 338 (09) : 667 - 672
  • [9] Stable anti-Yetter-Drinfeld modules
    Hajac, PM
    Khalkhali, M
    Rangipour, B
    Sommerhäuser, Y
    [J]. COMPTES RENDUS MATHEMATIQUE, 2004, 338 (08) : 587 - 590
  • [10] Halbig S., ARXIV190810750