Computation and Hypercomputation

被引:0
作者
Powell, Andrew [1 ]
机构
[1] Imperial Coll, Inst Secur Sci & Technol, South Kensington Campus, London SW7 2AZ, England
关键词
computation; diagonalization; hypercomputation; recursion theory; von Neumann hierarchy of pure sets; NOT-EQUAL NP; TIME; MACHINES;
D O I
10.3390/math10060997
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper shows some of the differences and similarities between computation and hypercomputation, the similarities relating to the complexity of propositional computation and the differences being the propositions that can be decided computationally or hypercomputationally. The methods used are ordinal Turing machines with infinitely long programs and diagonalization out of computing complexity classes. The main results are the characterization of inequalities of run time complexities of serial, indeterministic serial and parallel computers and hypercomputers and the specification of a hierarchy of hypercomputers that can hypercompute the truths of all propositions in the standard class model of set theory, the von Neumann hierarchy of pure sets.
引用
收藏
页数:16
相关论文
共 35 条
[1]  
[Anonymous], 1973, Foundations of Set Theory
[2]  
Arora S, 2009, COMPUTATIONAL COMPLEXITY: A MODERN APPROACH, P1, DOI 10.1017/CBO9780511804090
[3]   Weaker variants of infinite time Turing machines [J].
Bianchetti, Matteo .
ARCHIVE FOR MATHEMATICAL LOGIC, 2020, 59 (3-4) :335-365
[4]  
Carl M, 2018, LECT NOTES COMPUTER, V936, P136
[5]  
Carl M., 2019, DE GRUYTER SERIES LO
[6]   Taming Koepke's Zoo II: Register machines [J].
Carl, Merlin .
ANNALS OF PURE AND APPLIED LOGIC, 2022, 173 (03)
[7]   Space and time complexity for infinite time Turing machines [J].
Carl, Merlin .
JOURNAL OF LOGIC AND COMPUTATION, 2020, 30 (06) :1239-1255
[8]   The basic theory of infinite time register machines [J].
Carl, Merlin ;
Fischbach, Tim ;
Koepke, Peter ;
Miller, Russell ;
Nasfi, Miriam ;
Weckbecker, Gregor .
ARCHIVE FOR MATHEMATICAL LOGIC, 2010, 49 (02) :249-273
[9]   Hyperproperties [J].
Clarkson, Michael R. ;
Schneider, Fred B. .
CSF 2008: 21ST IEEE COMPUTER SECURITY FOUNDATIONS SYMPOSIUM, PROCEEDINGS, 2008, :51-65
[10]   P ≠ NP ∧ co-NP for infinite time Turing machines [J].
Deolalikar, V ;
Hamkins, JD ;
Schindler, R .
JOURNAL OF LOGIC AND COMPUTATION, 2005, 15 (05) :577-592