REDUCED-ORDER STATE ESTIMATION FOR LINEAR TIME-VARYING SYSTEMS

被引:0
作者
Kim, In Sung [1 ]
Teixeira, Bruno O. S. [2 ]
Chandrasekar, Jaganath [1 ]
Bernstein, Dennis S. [1 ]
机构
[1] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
[2] Univ Fed Minas Gerais, Dept Elect Engn, Belo Horizonte, MG, Brazil
基金
美国国家科学基金会;
关键词
Reduced-order Kalman filter; reduced-order state estimation; linear time-varying systems; OPTIMAL PROJECTION EQUATIONS; KALMAN FILTER; DISCRETE;
D O I
10.1002/asjc.141
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider reduced-order and subspace state estimators for linear discrete-time systems with possibly time-varying dynamics. The reduced-order and subspace estimators are obtained using a finite-horizon minimization approach, and thus do not require the solution of algebraic Lyapunov or Riccati equations.
引用
收藏
页码:595 / 609
页数:15
相关论文
共 21 条
[1]  
Ballabrera-Poy J, 2001, J CLIMATE, V14, P1720, DOI 10.1175/1520-0442(2001)014<1720:AOAROK>2.0.CO
[2]  
2
[3]  
Bernstein D. S., 2005, Matrix Mathematics
[4]   THE OPTIMAL PROJECTION EQUATIONS FOR REDUCED-ORDER STATE ESTIMATION [J].
BERNSTEIN, DS ;
HYLAND, DC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1985, 30 (06) :583-585
[5]   THE OPTIMAL PROJECTION EQUATIONS FOR REDUCED-ORDER, DISCRETE-TIME MODELING, ESTIMATION, AND CONTROL [J].
BERNSTEIN, DS ;
DAVIS, LD ;
HYLAND, DC .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1986, 9 (03) :288-293
[6]   Reduced-rank unscented Kalman filtering using Cholesky-based decomposition [J].
Chandrasekar, J. ;
Kim, I. S. ;
Bernstein, D. S. ;
Ridley, A. J. .
INTERNATIONAL JOURNAL OF CONTROL, 2008, 81 (11) :1779-1792
[7]   Kalman filtering with constrained output injection [J].
Chandrasekar, J. ;
Bernstein, D. S. ;
Barrero, O. ;
De Moor, B. L. R. .
INTERNATIONAL JOURNAL OF CONTROL, 2007, 80 (12) :1863-1879
[8]  
Chandrasekar J., 2007, P 46 IEEE C DEC CONT, P6214
[9]  
Farrell BF, 2001, J ATMOS SCI, V58, P3666, DOI 10.1175/1520-0469(2001)058<3666:SEUARO>2.0.CO
[10]  
2