The generic transformation can be embedded in a flow

被引:24
作者
De la Rue, T [1 ]
Lazaro, JD [1 ]
机构
[1] Univ Rouen, Lab Math Raphael Salem, UMR 6085, CNRS, F-76821 Mont St Aignan, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2003年 / 39卷 / 01期
关键词
generic automorphism; flow;
D O I
10.1016/S0246-0203(02)00012-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove in this work that the generic automorphism of a Lebesgue space can be embedded in a flow. We also show that a dyadic group action is, on the contrary, generically not embeddable in a flow. Finally, this work ends with a technical discussion establishing the equivalence between the notions of flow of automorphisms (each time being defined up to a set of measure zero), and flow of point transformations (C) 2003 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:121 / 134
页数:14
相关论文
共 8 条
[1]  
GLASNER E, 1998, TOPOLOGICAL DYNAMICS, P231
[2]  
Halmos P.R., 1956, LECT ERGODIC THEORY
[3]  
KATOK AB, 1967, RUSS MATH SURV, V22, P77
[4]  
KECHRIS AS, 1995, CLASSICLA DESCRIPTIV
[5]   THE COMMUTANT IS THE WEAK CLOSURE OF THE POWERS, FOR RANK-1 TRANSFORMATIONS [J].
KING, J .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1986, 6 :363-384
[6]  
King JLF., 2000, C MATH, V84, P521
[7]  
NEVEU J, 1964, BASES MATH CALCUL PR
[8]  
Oxtoby J.C., 1971, MEASURE CATEGORY