Specimen Size Effects on Zr-Based Bulk Metallic Glasses Investigated by Uniaxial Compression and Spherical Nanoindentation

被引:37
作者
Bei, H. [1 ]
Lu, Z. P. [2 ]
Shim, S. [3 ]
Chen, G. [4 ]
George, E. P. [1 ,5 ]
机构
[1] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
[2] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
[3] Res Inst Ind Sci & Technol, Steel Struct Res Div, Gyunggi 445813, South Korea
[4] Nanjing Univ Sci & Technol, Minist Educ, Engn Res Ctr Mat Behav & Design, Nanjing 210094, Peoples R China
[5] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
来源
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE | 2010年 / 41A卷 / 07期
基金
中国国家自然科学基金;
关键词
PLASTICITY; DEFORMATION; STRENGTH; FLOW; CU;
D O I
10.1007/s11661-009-9994-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Specimen size effects on the mechanical behavior of Zr-based bulk metallic glasses (BMGs) were investigated by compression and nanoindentation tests. In compression, even at the 1- to 10-mm scale, stable shear band propagation and extensive plastic deformation can be achieved in small (2 mm) specimens, in contrast to large (6.5 mm) specimens, which fail catastrophically after limited plastic deformation. The yield strength is independent of specimen size in this range, and plastic deformation remains highly localized in a few shear bands even in those specimens that exhibit stable shear sliding. The fracture surfaces of small specimens are smooth, without the vein patterns normally observed as characteristic features on the fracture surfaces of BMGs. During spherical nanoindentation, it is found that the upper bound of the maximum shear stress to initiate plasticity (yielding) in a Zr-based BMG is almost constant for indenter radii smaller than similar to 90 A mu m. However, the lower bound of this maximum shear stress decreases with increasing indenter radius, probably due to the increased probability of finding defects underneath larger indenters.
引用
收藏
页码:1735 / 1742
页数:8
相关论文
共 33 条
[1]   Strength differences arising from homogeneous versus heterogeneous dislocation nucleation [J].
Bei, H. ;
Gao, Y. F. ;
Shim, S. ;
George, E. P. ;
Pharr, G. M. .
PHYSICAL REVIEW B, 2008, 77 (06)
[2]   Effects of pre-strain on the compressive stress-strain response of Mo-alloy single-crystal micropillars [J].
Bei, H. ;
Shim, S. ;
Pharr, G. M. ;
George, E. P. .
ACTA MATERIALIA, 2008, 56 (17) :4762-4770
[3]   Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique [J].
Bei, H. ;
Shim, S. ;
George, E. P. ;
Miller, M. K. ;
Herbert, E. G. ;
Pharr, G. M. .
SCRIPTA MATERIALIA, 2007, 57 (05) :397-400
[4]   Influence of indenter tip geometry on elastic deformation during nanoindentation [J].
Bei, H ;
George, EP ;
Hay, JL ;
Pharr, GM .
PHYSICAL REVIEW LETTERS, 2005, 95 (04)
[5]   Theoretical strength and the onset of plasticity in bulk metallic glasses investigated by nanoindentation with a spherical indenter [J].
Bei, H ;
Lu, ZP ;
George, EP .
PHYSICAL REVIEW LETTERS, 2004, 93 (12) :125504-1
[6]   Global melting of Zr57Ti5Ni8Cu20Al10 bulk metallic glass under microcompression [J].
Cheng, Sheng ;
Wang, Xun-Li ;
Choo, Hahn ;
Liaw, Peter K. .
APPLIED PHYSICS LETTERS, 2007, 91 (20)
[7]   Scale-free intermittent flow in crystal plasticity [J].
Dimiduk, Dennis M. ;
Woodward, Chris ;
LeSar, Richard ;
Uchic, Michael D. .
SCIENCE, 2006, 312 (5777) :1188-1190
[8]   STRAIN GRADIENT PLASTICITY - THEORY AND EXPERIMENT [J].
FLECK, NA ;
MULLER, GM ;
ASHBY, MF ;
HUTCHINSON, JW .
ACTA METALLURGICA ET MATERIALIA, 1994, 42 (02) :475-487
[9]   Nanoscale gold pillars strengthened through dislocation starvation [J].
Greer, Julia R. ;
Nix, William D. .
PHYSICAL REVIEW B, 2006, 73 (24)
[10]   An instability index of shear band for plasticity in metallic glasses [J].
Han, Z. ;
Wu, W. F. ;
Li, Y. ;
Wei, Y. J. ;
Gao, H. J. .
ACTA MATERIALIA, 2009, 57 (05) :1367-1372