New semiparametric regression method with applications in selection-biased sampling and missing data problems

被引:0
作者
Diao, Guoqing [1 ]
Qin, Jing [2 ]
机构
[1] George Washington Univ, Dept Biostat & Bioinformat, Washington, DC 20052 USA
[2] NIAID, 9000 Rockville Pike, Bethesda, MD 20892 USA
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2021年 / 49卷 / 04期
关键词
Density ratio model; generalized linear model; missing data; nonparametric regression; selection‐ biased sampling; semiparametric regression; GENERALIZED LINEAR-MODELS; QUANTITATIVE-TRAIT LOCI; NONPARAMETRIC-ESTIMATION; DISTRIBUTIONS; FUNCTIONALS; SURVIVAL; POWER;
D O I
10.1002/cjs.11615
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a new method to estimate a regression function based on the semiparametric density ratio model, which can be viewed as a generalized linear model with a canonical link function and an unspecified baseline distribution function. Under this model, the distribution of the observed data retains the same structure in the presence of selection-biased sampling or when the predictors are missing at random. In particular, in the latter case, the new method utilizes all the available information and does not need to specify the distribution of the predictors or the probability of observing the predictors. We establish large sample properties of the proposed regression estimators. Simulation studies demonstrate that the proposed estimators perform well in practical situations. Empirical data from the National Health and Nutrition Examination Survey are presented.
引用
收藏
页码:1179 / 1195
页数:17
相关论文
共 40 条
  • [1] ANDERSON JA, 1979, BIOMETRIKA, V66, P17, DOI 10.1093/biomet/66.1.17
  • [2] [Anonymous], 1989, GEN LINEAR MODELS
  • [3] Nuisance parameter elimination for proportional likelihood ratio models with nonignorable missingness and random truncation
    Chan, Kwun Chuen Gary
    [J]. BIOMETRIKA, 2013, 100 (01) : 269 - 276
  • [4] Linkage disequilibrium mapping of quantitative-trait loci by selective genotyping
    Chen, ZH
    Zheng, G
    Ghosh, K
    Li, ZH
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2005, 77 (04) : 661 - 669
  • [5] Cox DR., 1969, New developments in survey sampling, P506
  • [6] Davey A., 2009, Statistical power analysis with missing data: A structural equation modeling approach
  • [7] Maximum Likelihood Estimation for Semiparametric Density Ratio Model
    Diao, Guoqing
    Ning, Jing
    Qin, Jing
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2012, 8 (01):
  • [8] EFROMOVICH S., 1999, Nonparametric curve estimation: Methods, theory and applications
  • [9] Nonparametric Regression With Predictors Missing at Random
    Efromovich, Sam
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (493) : 306 - 319
  • [10] Efron B, 1996, ANN STAT, V24, P2431