Progress of Nonprecious-Metal-Based Electrocatalysts for Oxygen Evolution in Acidic Media

被引:312
作者
Gao, Jiajian [1 ]
Tao, Huabing [1 ,2 ]
Liu, Bin [1 ,3 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 637459, Singapore
[2] Innovat Lab Sci & Technol Energy Mat Fujian Prov, Xiamen 361005, Peoples R China
[3] Nanyang Technol Univ, Sch Phys & Math Sci, Div Chem & Biol Chem, 21 Nanyang Link, Singapore 637371, Singapore
关键词
acidic media; nonprecious-metal electrocatalyst s; oxygen evolution reaction; water oxidation; ELECTROCHEMICAL WATER OXIDATION; HIGH-SURFACE-AREA; X-RAY-ABSORPTION; IRIDIUM OXIDE; MANGANESE OXIDE; CATALYST SUPPORTS; POURBAIX DIAGRAMS; EFFICIENT; CARBON; NANOPARTICLES;
D O I
10.1002/adma.202003786
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Water oxidation, or the oxygen evolution reaction (OER), which combines two oxygen atoms from two water molecules and releases one oxygen molecule, plays the key role by providing protons and electrons needed for the hydrogen generation, electrochemical carbon dioxide reduction, and nitrogen fixation. The multielectron transfer OER process involves multiple reaction intermediates, and a high overpotential is needed to overcome the sluggish kinetics. Among the different water splitting devices, proton exchange membrane (PEM) water electrolyzer offers greater advantages. However, current anode OER electrocatalysts in PEM electrolyzers are limited to precious iridium and ruthenium oxides. Developing highly active, stable, and precious-metal-free electrocatalysts for water oxidation in acidic media is attractive for the large-scale application of PEM electrolyzers. In recent years, various types of precious-metal-free catalysts such as carbon-based materials, earth-abundant transition metal oxides, and multiple metal oxide mixtures have been investigated and some of them show promising activity and stability for acidic OER. In this review, the thermodynamics of water oxidation, Pourbaix diagram of metal elements in aqueous solution, and theoretical screening and prediction of precious-metal-free electrocatalysts for acidic OER are first elaborated. The catalytic performance, reaction kinetics, and mechanisms together with future research directions regarding acidic OER are summarized and discussed.
引用
收藏
页数:18
相关论文
共 180 条
[1]   Iridium Oxide for the Oxygen Evolution Reaction: Correlation between Particle Size, Morphology, and the Surface Hydroxo Layer from Operando XAS [J].
Abbott, Daniel F. ;
Lebedev, Dmitry ;
Waltar, Kay ;
Povia, Mauro ;
Nachtegaal, Maarten ;
Fabbri, Emiliana ;
Coperet, Christophe ;
Schmidt, Thomas J. .
CHEMISTRY OF MATERIALS, 2016, 28 (18) :6591-6604
[2]   Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment [J].
Anantharaj, S. ;
Ede, S. R. ;
Karthick, K. ;
Sankar, S. Sam ;
Sangeetha, K. ;
Karthik, P. E. ;
Kundu, Subrata .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (04) :744-771
[3]   Spinel Cobalt Titanium Binary Oxide as an All-Non-Precious Water Oxidation Electrocatalyst in Acid [J].
Anantharaj, Sengeni ;
Karthick, Kannimuthu ;
Kundu, Subrata .
INORGANIC CHEMISTRY, 2019, 58 (13) :8570-8576
[4]   Substrate Selection for Fundamental Studies of Electrocatalysts and Photoelectrodes: Inert Potential Windows in Acidic, Neutral, and Basic Electrolyte [J].
Benck, Jesse D. ;
Pinaud, Blaise A. ;
Gorlin, Yelena ;
Jaramillo, Thomas F. .
PLOS ONE, 2014, 9 (10)
[5]   Revised Pourbaix diagrams for iron at 25-300 degrees C [J].
Beverskog, B ;
Puigdomenech, I .
CORROSION SCIENCE, 1996, 38 (12) :2121-2135
[6]   Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts [J].
Binninger, Tobias ;
Mohamed, Rhiyaad ;
Waltar, Kay ;
Fabbri, Emiliana ;
Levecque, Pieter ;
Koetz, Ruediger ;
Schmidt, Thomas J. .
SCIENTIFIC REPORTS, 2015, 5
[7]   Molecular Catalysts for Water Oxidation [J].
Blakemore, James D. ;
Crabtree, Robert H. ;
Brudvig, Gary W. .
CHEMICAL REVIEWS, 2015, 115 (23) :12974-13005
[8]  
Blasco-Ahicart M, 2018, NAT CHEM, V10, P24, DOI [10.1038/NCHEM.2874, 10.1038/nchem.2874]
[9]   Low pH Electrolytic Water Splitting Using Earth-Abundant Metastable Catalysts That Self-Assemble in Situ [J].
Bloor, Leanne G. ;
Molina, Pedro I. ;
Symes, Mark D. ;
Cronin, Leroy .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (08) :3304-3311
[10]   Design of Multi-Metallic-Based Electrocatalysts for Enhanced Water Oxidation [J].
Bo, Xin ;
Dastafkan, Kamran ;
Zhao, Chuan .
CHEMPHYSCHEM, 2019, 20 (22) :2936-2945