Lupin hull cellulose nanofiber aerogel preparation by supercritical CO2 and freeze drying

被引:86
作者
Ciftci, Deniz [1 ]
Ubeyitogullari, Ali [2 ]
Huerta, Raquel Razzera [1 ]
Ciftci, Ozan N. [2 ]
Flores, Rolando A. [2 ,3 ]
Saldana, Marleny D. A. [1 ]
机构
[1] Univ Alberta, Dept Agr Food & Nutr Sci, Edmonton, AB T6G 2P5, Canada
[2] Univ Nebraska, Dept Food Sci & Technol, Lincoln, NE 68588 USA
[3] New Mexico State Univ, Coll Agr Consumer & Environm Sci, Las Cruces, NM 88003 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Aerogel; Cellulose nanofiber; Freeze drying; Lupin hull; Supercritical CO2 drying; FLEXIBLE AEROGELS; HYDROLYSIS; SURFACE; LONG;
D O I
10.1016/j.supflu.2017.04.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, aerogels were prepared from cellulose nanofiber hydrogels obtained via ultrasonication of subcritical water-assisted treated lupin hull. The SCCO2 drying and freeze drying were evaluated for aerogel formation with initial hydrogel concentrations in the range of 1-2 wt%. The effects of concentration and drying method on resultant aerogel properties (density, porosity, specific surface area, pore size and pore volume), crystallinity, thermal behavior and morphology were investigated. The SCCO2 drying was more advantageous in aerogel formation, allowing the production of aerogels with lower density (0.009-0.05 g/cm(3)), and higher surface area (72-115 m(2)/g) compared to freeze-dried aerogels at each concentration level investigated. The aerogel prepared from 1 wt% hydrogel concentration using SCCO2 drying provided the lowest density of 0.009 g/cm(3), the highest porosity of 99% and the highest specific surface area of 115 m(2)/g with high crystallinity index (72%) and thermal stability with degradation temperature of 310 degrees C.
引用
收藏
页码:137 / 145
页数:9
相关论文
共 38 条
[21]  
Olsson RT, 2010, NAT NANOTECHNOL, V5, P584, DOI [10.1038/nnano.2010.155, 10.1038/NNANO.2010.155]
[22]   Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels [J].
Paakko, M. ;
Ankerfors, M. ;
Kosonen, H. ;
Nykanen, A. ;
Ahola, S. ;
Osterberg, M. ;
Ruokolainen, J. ;
Laine, J. ;
Larsson, P. T. ;
Ikkala, O. ;
Lindstrom, T. .
BIOMACROMOLECULES, 2007, 8 (06) :1934-1941
[23]   Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities [J].
Paakko, Marjo ;
Vapaavuori, Jaana ;
Silvennoinen, Riitta ;
Kosonen, Harri ;
Ankerfors, Mikael ;
Lindstrom, Tom ;
Berglund, Lars A. ;
Ikkala, Olli .
SOFT MATTER, 2008, 4 (12) :2492-2499
[24]   Chemistry of aerogels and their applications [J].
Pierre, AC ;
Pajonk, GM .
CHEMICAL REVIEWS, 2002, 102 (11) :4243-4265
[25]   Influence of homogenization and drying on the thermal stability of microfibrillated cellulose [J].
Quievy, N. ;
Jacquet, N. ;
Sclavons, M. ;
Deroanne, C. ;
Paquot, M. ;
Devaux, J. .
POLYMER DEGRADATION AND STABILITY, 2010, 95 (03) :306-314
[26]   Preparation and Characterization of Cellulose Nanofibers from Cassava Pulp [J].
Ruangudomsakul, Watcharin ;
Ruksakulpiwat, Chaiwat ;
Ruksakulpiwat, Yupaporn .
MACROMOLECULAR SYMPOSIA, 2015, 354 (01) :170-176
[27]   Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials [J].
Saito, Tsuguyuki ;
Uematsu, Takehiko ;
Kimura, Satoshi ;
Enomae, Toshiharu ;
Isogai, Akira .
SOFT MATTER, 2011, 7 (19) :8804-8809
[28]  
Segal L., 1959, Text. Res. J., V29, P786, DOI [10.1177/004051755902901003, DOI 10.1177/004051755902901003]
[29]   High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC) [J].
Sehaqui, Houssine ;
Zhou, Qi ;
Berglund, Lars A. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2011, 71 (13) :1593-1599
[30]   Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions [J].
Sehaqui, Houssine ;
Salajkova, Michaela ;
Zhou, Qi ;
Berglund, Lars A. .
SOFT MATTER, 2010, 6 (08) :1824-1832