Local convergence of the boundary element method on polyhedral domains

被引:2
|
作者
Faustmann, Markus [1 ]
Melenk, Jens Markus [1 ]
机构
[1] TU Wien, Inst Anal & Sci Comp, Inst E101, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
关键词
STRONGLY ELLIPTIC-EQUATIONS; H-MATRIX APPROXIMANTS; LIPSCHITZ-DOMAINS; DIRICHLET PROBLEM; GALERKIN METHODS; BEM MATRICES; OPERATOR; INVERSE; INEQUALITIES; EXISTENCE;
D O I
10.1007/s00211-018-0975-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The local behavior of the lowest order boundary element method on quasiuniform meshes forSymm's integral equation and the stabilized hyper-singular integral equation on polygonal/polyhedral Lipschitz domains is analyzed. We prove local a priori estimates in L-2 for Symm's integral equation and in H-1 for the hyper-singular equation. The local rate of convergence is limited by the local regularity of the sought solution and the sum of the rates given by the global regularity and additional regularity provided by the shift theorem for a dual problem.
引用
收藏
页码:593 / 637
页数:45
相关论文
共 50 条
  • [21] Local defect correction for the boundary element method
    Kakuba, G.
    Mattheij, R. M. M.
    Anthonissen, M. J. H.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2006, 15 (03): : 127 - 135
  • [22] The optimal convergence of the h-p version of the boundary element method with quasiuniform meshes for elliptic problems on polygonal domains
    Guo, BQ
    Heuer, N
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2006, 24 (1-4) : 353 - 374
  • [23] A Hodge Decomposition Finite Element Method for the Quad-Curl Problem on Polyhedral Domains
    Brenner, Susanne C.
    Cavanaugh, Casey
    Sung, Li-yeng
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 100 (03)
  • [24] AN ADAPTED BOUNDARY ELEMENT METHOD FOR THE DIRICHLET PROBLEM IN POLYGONAL DOMAINS
    BOURLARD, M
    NICAISE, S
    PAQUET, L
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (03) : 728 - 743
  • [25] ON THE CONVERGENCE OF THE P-VERSION OF THE BOUNDARY ELEMENT GALERKIN METHOD
    STEPHAN, EP
    SURI, M
    MATHEMATICS OF COMPUTATION, 1989, 52 (185) : 31 - 48
  • [26] Convergence behaviour of the enriched scaled boundary finite element method
    Bremm, Sophia
    Hell, Sascha
    Becker, Wilfried
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 120 (07) : 880 - 900
  • [27] FINITE ELEMENT POINTWISE RESULTS ON CONVEX POLYHEDRAL DOMAINS
    Leykekhman, Dmitriy
    Vexler, Boris
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (02) : 561 - 587
  • [28] REMARKS ON BOUNDARY CONTROL FOR POLYHEDRAL DOMAINS AND RELATED RESULTS
    LITTMAN, W
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1992, 178 : 272 - 284
  • [29] Natural boundary element method for elliptic boundary value problems in domains with concave angle
    Du, Qi-Kui
    Yu, De-Hao
    Journal of Marine Science and Technology, 2001, 9 (02): : 75 - 83
  • [30] A wavelet-Galerkin boundary element method on polyhedral surfaces in R3
    Lage, C
    Schwab, C
    NUMERICAL TREATMENT OF MULTI-SCALE PROBLEMS, 2001, 70 : 104 - 118