Local convergence of the boundary element method on polyhedral domains

被引:2
|
作者
Faustmann, Markus [1 ]
Melenk, Jens Markus [1 ]
机构
[1] TU Wien, Inst Anal & Sci Comp, Inst E101, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
关键词
STRONGLY ELLIPTIC-EQUATIONS; H-MATRIX APPROXIMANTS; LIPSCHITZ-DOMAINS; DIRICHLET PROBLEM; GALERKIN METHODS; BEM MATRICES; OPERATOR; INVERSE; INEQUALITIES; EXISTENCE;
D O I
10.1007/s00211-018-0975-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The local behavior of the lowest order boundary element method on quasiuniform meshes forSymm's integral equation and the stabilized hyper-singular integral equation on polygonal/polyhedral Lipschitz domains is analyzed. We prove local a priori estimates in L-2 for Symm's integral equation and in H-1 for the hyper-singular equation. The local rate of convergence is limited by the local regularity of the sought solution and the sum of the rates given by the global regularity and additional regularity provided by the shift theorem for a dual problem.
引用
收藏
页码:593 / 637
页数:45
相关论文
共 50 条