A cohomology attached to a function

被引:5
作者
Monnier, P [1 ]
机构
[1] Univ Tecn Lisboa, Dept Matemat, Inst Super Tecn, P-1049001 Lisbon, Portugal
关键词
differential forms; Poisson cohomology; lie algebroids; singularities;
D O I
10.1016/j.difgeo.2004.07.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a certain cohomology attached to a smooth function, which arose naturally in Poisson geometry. We explain how this cohomology depends on the function, and we prove that it satisfies both the excision and the Mayer-Vietoris axioms. For a regular function we show that the cohomology is related to the de Rham cohomology. Finally, we use it to give a new proof of a well-known result of A. Dimca [Compositio Math. 76 (1990) 19-47] in complex analytic geometry. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:49 / 68
页数:20
相关论文
共 29 条
[1]  
[Anonymous], 1966, PUBL MATH-PARIS
[2]  
Arnold V. I., 2012, CLASSIFICATION CRITI, V1
[3]  
Bott R., 1982, DIFFERENTIAL FORMS A
[4]  
Cannas da Silva A, 1999, BERKELEY MATH LECT, V10
[5]   Integrability of Lie brackets [J].
Crainic, M ;
Fernandes, RL .
ANNALS OF MATHEMATICS, 2003, 157 (02) :575-620
[6]  
DIMCA A, 1990, COMPOS MATH, V76, P19
[7]   ON THE DERHAM COHOMOLOGY OF A HYPERSURFACE COMPLEMENT [J].
DIMCA, A .
AMERICAN JOURNAL OF MATHEMATICS, 1991, 113 (04) :763-771
[8]  
DIMCA A, 1993, COMPOS MATH, V85, P299
[9]  
DOLGACHEV I, 1982, LECT NOTES MATH, V956, P34
[10]   Witten deformation and polynomial differential forms [J].
Farber, M ;
Shustin, E .
GEOMETRIAE DEDICATA, 2000, 80 (1-3) :125-155