Razumikhin Stability Theorem for Fractional Systems with Delay

被引:62
作者
Baleanu, D. [1 ,2 ]
Sadati, S. J. [3 ]
Ghaderi, R. [3 ]
Ranjbar, A. [3 ]
Abdeljawad , T. [1 ]
Jarad, Fahd [1 ]
机构
[1] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[2] Inst Space Sci, Space Res Lab, R-077125 Bucharest, Romania
[3] Babol Univ Technol, Fac Elect Engn, Dept Elect & Comp Engn, Babol Sar, Iran
关键词
D O I
10.1155/2010/124812
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fractional calculus techniques and methods started to be applied successfully during the last decades in several fields of science and engineering. In this paper we studied the stability of fractional-order nonlinear time-delay systems for Riemann-Liouville and Caputo derivatives and we extended Razumikhin theorem for the fractional nonlinear time-delay systems.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 23 条
  • [1] [Anonymous], MATH METHODS CHEM EN
  • [2] ON SUFFICIENT CONDITIONS FOR STABILITY INDEPENDENT OF DELAY
    CHEN, J
    XU, DM
    SHAFAI, B
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (09) : 1675 - 1680
  • [3] Deng WH, 2007, NONLINEAR DYNAM, V48, P409, DOI [10.1007/s11071-006-9094-0, 10.1007/s11071 -006-9094-0]
  • [4] Hale J.K., 1993, Applied Mathematical Sciences, V99, DOI DOI 10.1007/978-1-4612-4342-7
  • [5] KEQUIN G, 2003, STABILITY TIME DELAY
  • [6] Kilbas AA., 2006, Theory and Applications of Fractional Differential Equations, V204, DOI DOI 10.1016/S0304-0208(06)80001-0
  • [7] LANUSSE P, 1993, 1993, INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS: SYSTEMS ENGINEERING IN THE SERVICE OF HUMANS, VOL 2, P149
  • [8] Finite time stability analysis of PDα fractional control of robotic time-delay systems
    Lazarevic, MP
    [J]. MECHANICS RESEARCH COMMUNICATIONS, 2006, 33 (02) : 269 - 279
  • [9] STABILITY OF TIME-DELAY SYSTEMS
    LEE, TN
    DIANAT, S
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1981, 26 (04) : 951 - 953
  • [10] Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability
    Li, Yan
    Chen, YangQuan
    Podlubny, Igor
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) : 1810 - 1821