Broadband Nonreciprocal Acoustic Propagation Using Programmable Boundary Conditions: From Analytical Modeling to Experimental Implementation

被引:23
|
作者
Karkar, Sami [1 ]
De Bono, Emanuele [1 ]
Collet, Manuel [1 ]
Matten, Gael [2 ]
Ouisse, Morvan [2 ]
Rivet, Etienne [3 ]
机构
[1] CNRS, Ecole Cent Lyon, UMR5513, LTDS, 36 Ave Guy Collongue, F-69134 Ecully, France
[2] Univ Bourgogne Franche Comte, FEMTO ST Inst, Dept Appl Mech, CNRS,UFC,ENSMM,UTBM, 24 Chemin Epitaphe, F-25000 Besancon, France
[3] Ecole Polytech Fed Lausanne, Acoust Grp, Lab Signal Proc 2, IEL,STI, 10 Route Cantonale, CH-1015 Lausanne, Switzerland
来源
PHYSICAL REVIEW APPLIED | 2019年 / 12卷 / 05期
关键词
OPTICAL ISOLATION;
D O I
10.1103/PhysRevApplied.12.054033
中图分类号
O59 [应用物理学];
学科分类号
摘要
We theoretically, numerically and experimentally demonstrate the acoustic isolator effect in a one-dimensional waveguide with direction-dependent controlled boundary conditions. A theoretical model is used to explain the principle of nonreciprocal propagation in boundary-controlled waveguides. Numerical simulations are preformed on a reduced model to show the nonreciprocity as well as the passivity of the system through the computation of the scattering matrix and the power delivered by the system. Finally, an experimental implementation validates the potential of programmable boundary conditions for nonreciprocal propagation.
引用
收藏
页数:10
相关论文
共 35 条
  • [1] NONRECIPROCAL ACOUSTICS USING PROGRAMMABLE BOUNDARY CONDITIONS: FROM BOUNDARY CONTROL AND ACTIVE METAMATERIALS TO THE ACOUSTIC DIODE
    Karkar, Sami
    Collet, Manuel
    PROCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, 2017, VOL 2, 2017,
  • [2] Attenuating boundary conditions for numerical modeling of acoustic wave propagation
    Cao, SH
    Greenhalgh, S
    GEOPHYSICS, 1998, 63 (01) : 231 - 243
  • [3] Experimental and analytical investigations of acoustic wave propagation using a reservoir and an acoustic lens
    Kasai, N. (n-kasai@ynu.ac.jp), 1600, American Society for Nondestructive Testing (70):
  • [4] Experimental and Analytical Investigations of Acoustic Wave Propagation using a Reservoir and an Acoustic Lens
    Kasai, Naoya
    Mouni, Kunihiko
    Nakamura, Hideyuki
    Hatanaka, Hiroaki
    Arakawa, Takahiro
    Sekine, Kazuyoshi
    MATERIALS EVALUATION, 2012, 70 (04) : 470 - 478
  • [5] Modeling of Wave Propagation in a Geomedium Layer Using PML Absorbing Boundary Conditions
    Bakeev, R. A.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019, 2019, 2167
  • [6] Cased borehole acoustic-wave propagation with varying bonding conditions: Theoretical and experimental modeling
    Jiang C.
    Chen X.-L.
    Su Y.-D.
    Tang X.-M.
    Geophysics, 2019, 84 (04): : D161 - D169
  • [7] Cased borehole acoustic-wave propagation with varying bonding conditions: Theoretical and experimental modeling
    Jiang, Can
    Chen, Xue-Lian
    Su, Yuan-Da
    Tang, Xiao-Ming
    GEOPHYSICS, 2019, 84 (04) : D161 - D169
  • [8] Trapezoid coordinate finite difference modeling of acoustic wave propagation using the CPML boundary condition
    Wu, Bangyu
    Xu, Wenhao
    Li, Bo
    Jia, Junxiong
    JOURNAL OF APPLIED GEOPHYSICS, 2019, 168 : 101 - 106
  • [9] Modeling impedance boundary conditions and acoustic barriers using the immersed boundary method: The one-dimensional case
    Bilbao, Stefan
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2023, 153 (04): : 2023 - 2036
  • [10] Modeling impedance boundary conditions and acoustic barriers using the immersed boundary method: The three-dimensional case
    Bilbao, Stefan
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2023, 154 (02): : 874 - 885