A Robust Descriptor for Color Texture Classification Under Varying Illumination

被引:4
作者
Negri, Tamiris Trevisan [1 ,2 ,3 ]
Zhou, Fang [2 ]
Obradovic, Zoran [2 ]
Gonzaga, Adilson [1 ]
机构
[1] Univ Sao Paulo, Dept Elect & Comp Engn, Sao Carlos, SP, Brazil
[2] Temple Univ, Ctr Data Analyt & Biomed Informat, Philadelphia, PA 19122 USA
[3] Fed Inst Educ Sci & Technol Sao Paulo, Araraquara, Brazil
来源
PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISIGRAPP 2017), VOL 4 | 2017年
基金
巴西圣保罗研究基金会;
关键词
Color Texture; Texture Description; Illumination; Local Descriptors; FEATURES; REPRESENTATION; SCENE;
D O I
10.5220/0006143403780388
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Classifying color textures under varying illumination sources remains challenging. To address this issue, this paper introduces a new descriptor for color texture classification, which is robust to changes in the scene illumination. The proposed descriptor, named Color Intensity Local Mapped Pattern (CILMP), incorporates relevant information about the color and texture patterns from the image in a multiresolution fashion. The CILMP descriptor explores the color features by comparing the magnitude of the color vectors inside the RGB cube. The proposed descriptor is evaluated on nine experiments over 50,048 images of raw food textures acquired under 46 lighting conditions. The experimental results have shown that CILMP performs better than the state-of-the-art methods, reporting an increase (up to 20.79%) in the classification accuracy, compared to the second-best descriptor. In addition, we concluded from the experimental results that the multiresolution analysis improves the robustness of the descriptor and increases the classification accuracy.
引用
收藏
页码:378 / 388
页数:11
相关论文
共 26 条
[1]  
[Anonymous], P BRIT MACH VIS C
[2]  
[Anonymous], 2014, 29 ANN ACM S APPL CO
[3]  
Arvis V., 2004, Image Analysis & Stereology, V23, P63, DOI 10.5566/ias.v23.p63-72
[4]   Theoretical and experimental comparison of different approaches for color texture classification [J].
Bianconi, Francesco ;
Harvey, Richard ;
Southam, Paul ;
Fernandez, Antonio .
JOURNAL OF ELECTRONIC IMAGING, 2011, 20 (04)
[5]  
Chang T. Duc, 2007, P IEEE REG 10 C NOV, P1, DOI [DOI 10.1109/TENCON.2007.4483783, 10.1109/TENCON.2007.4483783]
[6]   Evaluating color texture descriptors under large variations of controlled lighting conditions [J].
Cusano, Claudio ;
Napoletano, Paolo ;
Schettini, Raimondo .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2016, 33 (01) :17-30
[7]   Combining local binary patterns and local color contrast for texture classification under varying illumination [J].
Cusano, Claudio ;
Napoletano, Paolo ;
Schettini, Raimondo .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2014, 31 (07) :1453-1461
[8]  
Cusano C, 2013, LECT NOTES COMPUT SC, V7786, P239, DOI 10.1007/978-3-642-36700-7_19
[9]   Experiments in colour texture analysis [J].
Drimbarean, A ;
Whelan, PF .
PATTERN RECOGNITION LETTERS, 2001, 22 (10) :1161-1167
[10]  
Gonzalez RC, 2008, DIGITAL IMAGE PROCES