Qinghai-Tibet Plateau Permafrost at Risk in the Late 21st Century

被引:72
作者
Zhang, Guofei [1 ]
Nan, Zhuotong [2 ,3 ]
Hu, Na [2 ]
Yin, Ziyun [2 ]
Zhao, Lin [4 ]
Cheng, Guodong [5 ]
Mu, Cuicui [1 ,6 ]
机构
[1] Lanzhou Univ, Key Lab Western Chinas Environm Syst, Minist Educ, Lanzhou, Peoples R China
[2] Nanjing Normal Univ, Key Lab, Minist Educ Virtual Geog Environm, Nanjing, Peoples R China
[3] Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Sch Geog Sci, Nanjing, Peoples R China
[5] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Lanzhou, Peoples R China
[6] Lanzhou Univ, Observat & Res Stn Ecoenvironm Frozen Ground Qili, Lanzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Qinghai-Tibet Plateau; permafrost; future prediction; Three Rivers Source region; numerical simulation; CMIP6; CARBON RELEASE; CLIMATE-CHANGE; MODEL; CMIP6; TEMPERATURE; PROJECTIONS; ADJUSTMENT;
D O I
10.1029/2022EF002652
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Global warming has led to permafrost degradation worldwide. The Qinghai-Tibet Plateau (QTP) hosts most of the world's alpine permafrost, yet its impending changes remain largely unclear, thereby affecting regional hydrological and ecological processes and the global carbon budget. By employing a land surface model adapted to simulate frozen ground, and using state-of-the-art multi-model and multi-scenario data from the Coupled Model Intercomparison Project Phase 6, changes in permafrost distribution and its thermal regimes on the QTP are systematically predicted under various shared socioeconomic pathways (SSPs). Projections for SSP2-4.5, SSP3-7.0, and SSP5-8.5 show that most of the continuous permafrost region of the QTP will persist through 2050. Much of the permafrost is likely to degrade in the late 21st century, with projected area losses of 44 +/- 4%, 59 +/- 5%, and 71 +/- 7%, respectively, by 2100. In particular, the Three Rivers Source region in the central eastern part of the QTP is a key area of permafrost degradation, where permafrost is most vulnerable and degradation occurs earliest. The mean annual ground temperature of QTP permafrost will increase by 0.8 +/- 0.2 degrees C, 2.0 +/- 0.3 degrees C, and 2.6 +/- 0.3 degrees C under SSP2-4.5, SSP3-7.0, and SSP5-8.5, respectively, and the active layer thickness will increase by 0.7 +/- 0.1 m, 1.5 +/- 0.3 m, and 3.0 +/- 1.0 m, respectively. The surviving permafrost under SSP3-7.0 and SSP5-8.5 will be thermally unstable, which is a clear warning sign of complete disappearance. The analysis of permafrost sensitivity to climate change signifies that alpine permafrost on the QTP has low resilience to climate change, in contrast to permafrost in pan-Artic high latitudes.
引用
收藏
页数:22
相关论文
共 65 条
[1]   A Statistical Adjustment of Regional Climate Model Outputs to Local Scales: Application to Platja de Palma, Spain [J].
Amengual, A. ;
Homar, V. ;
Romero, R. ;
Alonso, S. ;
Ramis, C. .
JOURNAL OF CLIMATE, 2012, 25 (03) :939-957
[2]   Permafrost is warming at a global scale [J].
Biskaborn, Boris K. ;
Smith, Sharon L. ;
Noetzli, Jeannette ;
Matthes, Heidrun ;
Vieira, Goncalo ;
Streletskiy, Dmitry A. ;
Schoeneich, Philippe ;
Romanovsky, Vladimir E. ;
Lewkowicz, Antoni G. ;
Abramov, Andrey ;
Allard, Michel ;
Boike, Julia ;
Cable, William L. ;
Christiansen, Hanne H. ;
Delaloye, Reynald ;
Diekmann, Bernhard ;
Drozdov, Dmitry ;
Etzelmueller, Bernd ;
Grosse, Guido ;
Guglielmin, Mauro ;
Ingeman-Nielsen, Thomas ;
Isaksen, Ketil ;
Ishikawa, Mamoru ;
Johansson, Margareta ;
Johannsson, Halldor ;
Joo, Anseok ;
Kaverin, Dmitry ;
Kholodov, Alexander ;
Konstantinov, Pavel ;
Kroeger, Tim ;
Lambiel, Christophe ;
Lanckman, Jean-Pierre ;
Luo, Dongliang ;
Malkova, Galina ;
Meiklejohn, Ian ;
Moskalenko, Natalia ;
Oliva, Marc ;
Phillips, Marcia ;
Ramos, Miguel ;
Sannel, A. Britta K. ;
Sergeev, Dmitrii ;
Seybold, Cathy ;
Skryabin, Pavel ;
Vasiliev, Alexander ;
Wu, Qingbai ;
Yoshikawa, Kenji ;
Zheleznyak, Mikhail ;
Lantuit, Hugues .
NATURE COMMUNICATIONS, 2019, 10 (1)
[3]   Uncertainties in the global temperature change caused by carbon release from permafrost thawing [J].
Burke, E. J. ;
Hartley, I. P. ;
Jones, C. D. .
CRYOSPHERE, 2012, 6 (05) :1063-1076
[4]   Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change [J].
Burke, Eleanor J. ;
Zhang, Yu ;
Krinner, Gerhard .
CRYOSPHERE, 2020, 14 (09) :3155-3174
[5]   Estimation of permafrost on the Tibetan Plateau under current and future climate conditions using the CMIP5 data [J].
Chang, Yan ;
Lyu, Shihua ;
Luo, Siqiong ;
Li, Zhaoguo ;
Fang, Xuewei ;
Chen, Boli ;
Li, Ruiqing ;
Chen, Shiqiang .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2018, 38 (15) :5659-5676
[6]  
Chen D., 2021, CLIM CHANG 2021 PHYS, P147, DOI DOI 10.1017/9781009157896
[7]  
[陈德亮 Chen Deliang], 2015, [科学通报, Chinese Science Bulletin], V60, P3025
[8]   Noah Modelling of the Permafrost Distribution and Characteristics in the West Kunlun Area, Qinghai-Tibet Plateau, China [J].
Chen, Hao ;
Nan, Zhuotong ;
Zhao, Lin ;
Ding, Yongjian ;
Chen, Ji ;
Pang, Qiangqiang .
PERMAFROST AND PERIGLACIAL PROCESSES, 2015, 26 (02) :160-174
[9]   Alpine permafrost could account for a quarter of thawed carbon based on Plio-Pleistocene paleoclimate analogue [J].
Cheng, Feng ;
Garzione, Carmala ;
Li, Xiangzhong ;
Salzmann, Ulrich ;
Schwarz, Florian ;
Haywood, Alan M. ;
Tindall, Julia ;
Nie, Junsheng ;
Li, Lin ;
Wang, Lin ;
Abbott, Benjamin W. ;
Elliott, Ben ;
Liu, Weiguo ;
Upadhyay, Deepshikha ;
Arnold, Alexandrea ;
Tripati, Aradhna .
NATURE COMMUNICATIONS, 2022, 13 (01)
[10]  
Cheng G., 1984, Acta Geogr. Sin., V32, P185