Basis properties of a fourth order differential operator with spectral parameter in the boundary condition

被引:27
作者
Aliyev, Ziyatkhan S. [1 ]
机构
[1] Baku State Univ, Dept Math Anal, Baku, Azerbaijan
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2010年 / 8卷 / 02期
关键词
Fourth order eigenvalue problem; Spectral parameter in the boudary condition; Oscillation properties of eigenfunctions; Basis properties of the system of eigenfunctions; VIBRATING BEAM; EIGENVALUE PARAMETER; EQUATION; EIGENFUNCTIONS;
D O I
10.2478/s11533-010-0002-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a fourth order eigenvalue problem containing a spectral parameter both in the equation and in the boundary condition. The oscillation properties of eigenfunctions are studied and asymptotic formulae for eigenvalues and eigenfunctions are deduced. The basis properties in L (p) (0; l); p a (1;a); of the system of eigenfunctions are investigated.
引用
收藏
页码:378 / 388
页数:11
相关论文
共 22 条
[1]  
ALIYEV ZS, 2008, SERIES PHYS MATH SCI, V4, P8
[2]   PRUFER TRANSFORMATION FOR EQUATION OF A VIBRATING BEAM SUBJECT TO AXIAL FORCES [J].
BANKS, DO ;
KUROWSKI, GJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 24 (01) :57-74
[3]   Sturm theory for the equation of vibrating beam [J].
Ben Amara, Jamel .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 349 (01) :1-9
[4]   Oscillation properties for the equation of vibrating beam with irregular boundary conditions [J].
Ben Amara, Jamel .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 360 (01) :7-13
[5]  
BENAMARA J, 2004, P INT C FUNCT AN ITS, V197, P49
[6]  
BenAmara J., 2008, J. Math. Sci, V150, P2317, DOI [10.1007/s10958-008-0131-z, DOI 10.1007/S10958-008-0131-Z]
[7]   2-POINT BOUNDARY-VALUE PROBLEMS WITH EIGENVALUE PARAMETER CONTAINED IN BOUNDARY-CONDITIONS [J].
FULTON, CT .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1977, 77 :293-308
[8]   On a spectral problem arising in a mathematical model of torsional vibrations of a rod with pulleys at the ends [J].
Kapustin, NY .
DIFFERENTIAL EQUATIONS, 2005, 41 (10) :1490-1492
[9]   The basis property in Lp of the systems of eigenfunctions corresponding to two problems with a spectral parameter in the boundary condition [J].
Kapustin, NY ;
Moiseev, EI .
DIFFERENTIAL EQUATIONS, 2000, 36 (10) :1498-1501
[10]  
Kashin B. S., 1989, Orthogonal Series