Nonparametric estimation of a conditional quantile for α-mixing processes

被引:52
|
作者
Honda, T [1 ]
机构
[1] Univ Tsukuba, Inst Social Sci, Tsukuba, Ibaraki 3058571, Japan
关键词
conditional quantile; local polynomial fitting; alpha-mixing process; exponential inequality; Bahadur representation; uniform convergence;
D O I
10.1023/A:1004113201457
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (X'(i),Y-i)' be a set of observations form a stationary alpha-mixing process and theta(x) be the conditional alpha-th quantile of Y give X = x. Several authors considered nonparametric estimation of theta(x) in the i.i.d. setting. Assuming the smoothIless of theta(x), we estimate it by local polynomial fitting and prove the asymptotic normality and the uniform convergence.
引用
收藏
页码:459 / 470
页数:12
相关论文
共 50 条
  • [1] Nonparametric Estimation of a Conditional Quantile for α-Mixing Processes
    Toshio Honda
    Annals of the Institute of Statistical Mathematics, 2000, 52 : 459 - 470
  • [2] Nonparametric estimation and inference on conditional quantile processes
    Qu, Zhongjun
    Yoon, Jungmo
    JOURNAL OF ECONOMETRICS, 2015, 185 (01) : 1 - 19
  • [3] Nonparametric conditional quantile estimation: A locally weighted quantile kernel approach
    Racine, Jeffrey S.
    Li, Kevin
    JOURNAL OF ECONOMETRICS, 2017, 201 (01) : 72 - 94
  • [4] On nonparametric conditional quantile estimation for non-stationary spatial
    Kanga, Serge Hippolyte Arnaud
    Hili, Ouagnina
    Dabo-Niang, Sophie
    COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) : 847 - 852
  • [5] Nonparametric estimation of conditional quantiles using quantile regression trees
    Chaudhuri, P
    Loh, WY
    BERNOULLI, 2002, 8 (05) : 561 - 576
  • [6] Design-adaptive nonparametric estimation of conditional quantile derivatives
    Goh, S. C.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (03) : 597 - 612
  • [7] A SIMPLE NONPARAMETRIC APPROACH FOR ESTIMATION AND INFERENCE OF CONDITIONAL QUANTILE FUNCTIONS
    Fang, Zheng
    Li, Qi
    Yan, Karen X.
    ECONOMETRIC THEORY, 2023, 39 (02) : 290 - 320
  • [8] Nonparametric frontier estimation: A conditional quantile-based approach
    Aragon, Y
    Daouia, A
    Thomas-Agnan, C
    ECONOMETRIC THEORY, 2005, 21 (02) : 358 - 389
  • [9] Optimal smoothing in nonparametric conditional quantile derivative function estimation
    Lin, Wei
    Cai, Zongwu
    Li, Zheng
    Su, Li
    JOURNAL OF ECONOMETRICS, 2015, 188 (02) : 502 - 513
  • [10] Nonparametric estimation of conditional quantile functions in the presence of irrelevant covariates
    Chen, Xirong
    Li, Degui
    Li, Qi
    Li, Zheng
    JOURNAL OF ECONOMETRICS, 2019, 212 (02) : 433 - 450