Infrared-emitting colloidal nanocrystals:: Synthesis, assembly, spectroscopy, and applications

被引:365
作者
Rogach, Andrey L.
Eychmueller, Alexander
Hickey, Stephen G.
Kershaw, Stephen V.
机构
[1] Univ Munich, Dept Phys, Photon & Optoelect Grp, D-80799 Munich, Germany
[2] Univ Munich, Ctr Nanosci, D-80799 Munich, Germany
[3] Tech Univ Dresden, D-01062 Dresden, Germany
[4] Trackdale Ltd, Ctr Technol, Framlingham IP13 9EZ, Suffolk, England
关键词
colloids; infrared emission; nanocrystals; optics; semiconductors;
D O I
10.1002/smll.200600625
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Semiconductor nanocrystals produced by means of colloidal chemistry in a solvent medium are an attractive class of nanometer-sized building blocks from which to create complex materials with unique properties for a variety of applications. Their optical and electronic properties can be tailored easily, both by their chemical composition and particle size. While colloidal nanocrystals emitting in the infrared region have seen a burst of attention during the last decade there is clearly a paucity of review articles covering their synthesis, assembly, spectroscopic characterization, and applications. This Review comprehensively addresses these topics for II-VI, III-V, and IV-VI nanocrystals, examples being HgTe and CdxHg1-xTe, InP and InAs, and PbS PbSe, and PbTe, respectively. Among the applications discussed here are optical amplifier media for telecommunications systems, electroluminescence devices, and noninvasive optical imaging in biology.
引用
收藏
页码:536 / 557
页数:22
相关论文
共 223 条
[11]   Facile preparation of nanocrystalline gallium antimonide [J].
Baldwin, RA ;
Foos, EE ;
Wells, RL .
MATERIALS RESEARCH BULLETIN, 1997, 32 (02) :159-163
[12]   Size-dependent electronic level structure of InAs nanocrystal quantum dots: Test of multiband effective mass theory [J].
Banin, U ;
Lee, CJ ;
Guzelian, AA ;
Kadavanich, AV ;
Alivisatos, AP ;
Jaskolski, W ;
Bryant, GW ;
Efros, AL ;
Rosen, M .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (06) :2306-2309
[13]   Quantum confinement and ultrafast dephasing dynamics in InP nanocrystals [J].
Banin, U ;
Cerullo, G ;
Guzelian, AA ;
Alivisatos, AP ;
Shank, CV .
PHYSICAL REVIEW B, 1997, 55 (11) :7059-7067
[14]   Exchange interaction in InAs nanocrystal quantum dots [J].
Banin, U ;
Lee, JC ;
Guzelian, AA ;
Kadavanich, AV ;
Alivisatos, AP .
SUPERLATTICES AND MICROSTRUCTURES, 1997, 22 (04) :559-567
[15]   Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots [J].
Banin, U ;
Cao, YW ;
Katz, D ;
Millo, O .
NATURE, 1999, 400 (6744) :542-544
[16]   Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent [J].
Battaglia, D ;
Peng, XG .
NANO LETTERS, 2002, 2 (09) :1027-1030
[17]   Electronic coupling in InP nanoparticle arrays [J].
Beard, MC ;
Turner, GM ;
Murphy, JE ;
Micic, OI ;
Hanna, MC ;
Nozik, AJ ;
Schmuttenmaer, CA .
NANO LETTERS, 2003, 3 (12) :1695-1699
[18]   Electric fields on oxidized silicon surfaces: Static polarization of PbSe nanocrystals [J].
Ben-Porat, CH ;
Cherniavskaya, O ;
Brus, L ;
Cho, KS ;
Murray, CB .
JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (39) :7814-7819
[19]   Excited-state spectroscopy of InP quantum dots [J].
Bertram, D ;
Micic, OI ;
Nozik, AJ .
PHYSICAL REVIEW B, 1998, 57 (08) :R4265-R4268
[20]   Electron relaxation in colloidal InP quantum dots with photogenerated excitons or chemically injected electrons [J].
Blackburn, JL ;
Ellingson, RJ ;
Micic, OI ;
Nozik, AJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (01) :102-109