Compact Kahler surfaces with trivial canonical bundle

被引:4
作者
Buchdahl, N [1 ]
机构
[1] Univ Adelaide, Dept Pure Math, Adelaide, SA 5005, Australia
关键词
Complex; 2-torus; K3; surface; Kähler surface; Period map; Torelli theorem;
D O I
10.1023/A:1022557004624
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classical conjectures of Weil on K3 surfaces - that the set of such surfaces is connected; that a version of the Torelli theorem holds; that each such surface is Kahler; and that the period map is surjective - are reconsidered in the light of a generalisation of the Nakai-Moishezon criterion, and short proofs of all the conjectures are given. Most of the proofs apply equally or with minor variation to complex 2-tori, the only other compact Kahler surfaces with trivial canonical bundle.
引用
收藏
页码:189 / 204
页数:16
相关论文
共 28 条
[1]  
[Anonymous], 1978, Principles of algebraic geometry
[2]  
Barth W., 1984, COMPACT COMPLEX SURF
[3]  
BEAUVILLE A, 1985, ASTERISQUE, P99
[4]  
BEAUVILLE A, 1985, ASTERISQUE, P123
[5]  
BHEAUVILLE A, 1985, ASTERISQUE, V26, P111
[6]   DIFFEOMORPHISMS OF A K3 SURFACE [J].
BORCEA, C .
MATHEMATISCHE ANNALEN, 1986, 275 (01) :1-4
[7]   On compact Kahler surfaces [J].
Buchdahl, N .
ANNALES DE L INSTITUT FOURIER, 1999, 49 (01) :287-+
[8]  
BURNS D, 1975, ANN SCI ECOLE NORM S, V8, P235
[9]  
Demailly J.-P., 1992, J. Algebraic Geom., V1, P361
[10]   POLYNOMIAL INVARIANTS FOR SMOOTH 4-MANIFOLDS [J].
DONALDSON, SK .
TOPOLOGY, 1990, 29 (03) :257-315