Ternary Hom-Nambu-Lie algebras induced by Hom-Lie algebras

被引:67
作者
Arnlind, Joakim [1 ]
Makhlouf, Abdenacer [2 ]
Silvestrov, Sergei [3 ]
机构
[1] Max Planck Inst Gravitat Phys AEI, D-14476 Golm, Germany
[2] Univ Haute Alsace, Lab Math Informat & Applicat, F-68093 Mulhouse, France
[3] Lund Univ, Ctr Math Sci, SE-22100 Lund, Sweden
基金
瑞典研究理事会;
关键词
VIRASORO ALGEBRA; DEFORMATIONS;
D O I
10.1063/1.3359004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The need to consider n-ary algebraic structures, generalizing Lie and Poisson algebras, has become increasingly important in physics, and it should therefore be of interest to study the mathematical concepts related to n-ary algebras. The purpose of this paper is to investigate ternary multiplications (as deformations of n-Lie structures) constructed from the binary multiplication of a Hom-Lie algebra, a linear twisting map, and a trace function satisfying certain compatibility conditions. We show that the relation between the kernels of the twisting maps and the trace function plays an important role in this context and provide examples of Hom-Nambu-Lie algebras obtained using this construction. (C) 2010 American Institute of Physics. [doi:10.1063/1.3359004]
引用
收藏
页数:11
相关论文
共 45 条
[1]   Hypersymmetry: A Z(3)-graded generalization of supersymmetry [J].
Abramov, V ;
Kerner, R ;
LeRoy, B .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (03) :1650-1669
[2]   Q-DEFORMATION OF THE VIRASORO ALGEBRA WITH CENTRAL EXTENSION [J].
AIZAWA, N ;
SATO, H .
PHYSICS LETTERS B, 1991, 256 (02) :185-190
[3]  
AMMAR F, ARXIV10024116V1MATHR
[4]  
[Anonymous], 2008, J. Gen. Lie Theory Appl., DOI 10.4303/jglta/S070209
[5]  
[Anonymous], 2008, J. Generalized Lie Theo. Appl, DOI [DOI 10.4303/JGLTA/S070206, DOI 10.4303/jglta/S070206, 10.4303/jglta/S070206]
[6]   Generalization of n-ary Nambu algebras and beyond [J].
Ataguema, H. ;
Makhlouf, A. ;
Silvestrov, S. .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (08)
[7]  
Awata H, 2001, J HIGH ENERGY PHYS
[8]   Gauge symmetry and supersymmetry of multiple M2-branes [J].
Bagger, Jonathan ;
Lambert, Neil .
PHYSICAL REVIEW D, 2008, 77 (06)
[9]  
CAENEPEEL S, ARXIV09070187
[10]   Leibniz n-algebras [J].
Casas, JM ;
Loday, JL ;
Pirashvilli, T .
FORUM MATHEMATICUM, 2002, 14 (02) :189-207