Atomic-layer-deposition alumina induced carbon on porous NixCo1-xO nanonets for enhanced pseudocapacitive and Li-ion storage performance

被引:20
作者
Guan, Cao [1 ,2 ]
Wang, Yadong [3 ]
Zacharias, Margit [4 ]
Wang, John [1 ]
Fan, Hong Jin [2 ]
机构
[1] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117574, Singapore
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore
[3] Nanyang Polytech, Sch Engn, Singapore 569830, Singapore
[4] Univ Freiburg, Fac Engn, IMTEK, D-79110 Freiburg, Germany
关键词
atomic layer deposition; energy storage; carbon; metal oxides; ANODE MATERIALS; NANOSTRUCTURED ELECTRODES; SUPERCAPACITOR; GRAPHENE; ARRAYS; OXIDE; TIO2; ARCHITECTURE; COMPOSITES; NANOFLAKES;
D O I
10.1088/0957-4484/26/1/014001
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A unique composite nanonet of metal oxide@carbon interconnected sheets is obtained by atomic layer deposition (ALD)-assisted fabrication. In this nanonet structure, mesoporous metal oxide nanosheets are covered by a layer of amorphous carbon nanoflakes. Specifically, quasi-vertical aligned and mesoporous NixCo1-xO nanosheets are first fabricated directly on nickel foam substrates by a hydrothermal method. Then, an ALD-enabled carbon coating method is applied for the growth of carbon nanoflakes on the surface of the nanosheets. The thus formed 3D hierarchical structure of NixCo1-xO@carbon composite flakes have a higher surface area, better electrical conductivity and structure stability than the bare NixCo1-xO. The application of such composite nanomaterials is demonstrated as electrodes for a supercapacitor and a lithium-ion battery. In both tests, the composite electrode shows enhancement in capacity and cycling stability. This effective composite nanostructure design of metal oxides@carbon flakes could provide a promising method to construct high-performance materials for energy and environment applications.
引用
收藏
页数:9
相关论文
共 53 条
[1]   Atomic layer deposition of amorphous TiO2 on graphene as an anode for Li-ion batteries [J].
Ban, Chunmei ;
Xie, Ming ;
Sun, Xiang ;
Travis, Jonathan J. ;
Wang, Gongkai ;
Sun, Hongtao ;
Dillon, Anne C. ;
Lian, Jie ;
George, Steven M. .
NANOTECHNOLOGY, 2013, 24 (42)
[2]   Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes [J].
Boukhalfa, Sofiane ;
Evanoff, Kara ;
Yushin, Gleb .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (05) :6872-6879
[3]   Preparation of Novel 3D Graphene Networks for Supercapacitor Applications [J].
Cao, Xiehong ;
Shi, Yumeng ;
Shi, Wenhui ;
Lu, Gang ;
Huang, Xiao ;
Yan, Qingyu ;
Zhang, Qichun ;
Zhang, Hua .
SMALL, 2011, 7 (22) :3163-3168
[4]  
Chen Y L., Preparation and Characterization of Water-Soluble Chitosan Gel for Skin Hydration
[5]   Branched nanowires: Synthesis and energy applications [J].
Cheng, Chuanwei ;
Fan, Hong Jin .
NANO TODAY, 2012, 7 (04) :327-343
[6]   Ultrahigh Specific Capacitances for Supercapacitors Achieved by Nickel Cobaltite/Carbon Aerogel Composites [J].
Chien, Hsing-Chi ;
Cheng, Wei-Yun ;
Wang, Yong-Hui ;
Lu, Shih-Yuan .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (23) :5038-5043
[7]   Multi Ball-In-Ball Hybrid Metal Oxides [J].
Cho, Won ;
Lee, Yun Hee ;
Lee, Hee Jung ;
Oh, Moonhyun .
ADVANCED MATERIALS, 2011, 23 (15) :1720-+
[8]   3D Graphene-Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection [J].
Dong, Xiao-Chen ;
Xu, Hang ;
Wang, Xue-Wan ;
Huang, Yin-Xi ;
Chan-Park, Mary B. ;
Zhang, Hua ;
Wang, Lian-Hui ;
Huang, Wei ;
Chen, Peng .
ACS NANO, 2012, 6 (04) :3206-3213
[9]   Confined Volume Change in Sn-Co-C Ternary Tube-in-Tube Composites for High-Capacity and Long-Life Lithium Storage [J].
Gu, Yan ;
Wu, Fendan ;
Wang, Yong .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (07) :893-899
[10]   Atomic-Layer-Deposition-Assisted Formation of Carbon Nanoflakes on Metal Oxides and Energy Storage Application [J].
Guan, Cao ;
Zeng, Zhiyuan ;
Li, Xianglin ;
Cao, Xiehong ;
Fan, Yu ;
Xia, Xinhui ;
Pan, Guoxiang ;
Zhang, Hua ;
Fan, Hong Jin .
SMALL, 2014, 10 (02) :300-307