On a singular perturbed problem in an annulus

被引:0
作者
Santra, Sanjiban [1 ]
Wei, Juncheng [2 ]
机构
[1] Ctr Invest Math, Dept Basic Math, Guanajuato, Mexico
[2] Univ British Columbia, Dept Math, Vancouver, BC, Canada
关键词
SEMILINEAR NEUMANN PROBLEM; LEAST-ENERGY SOLUTIONS; SPIKE-LAYER SOLUTIONS; ELLIPTIC-EQUATIONS; PEAK SOLUTIONS; SYMMETRY; SPHERES; EXISTENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove the conjecture due to Ruf-Srikanth [14]. We prove the existence of positive solution under Dirichlet and Neumann boundary conditions, which concentrate near the inner boundary and outer boundary of an annulus respectively as epsilon -> 0. In fact, our result is independent of the dimension of R-N.
引用
收藏
页码:837 / 857
页数:21
相关论文
共 22 条
[1]   Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres, part II [J].
Ambrosetti, A ;
Malchiodi, A ;
Ni, WM .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (02) :297-329
[2]   Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres, part I [J].
Ambrosetti, A ;
Malchiodi, A ;
Ni, WM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 235 (03) :427-466
[3]  
[Anonymous], 2004, Handbook of Differential Equations: Stationary Partial Differential Equations, DOI DOI 10.1016/S1874-5733(04)80005-6
[4]  
[Anonymous], 1998, Not. Am. Math. Soc.
[5]   On the role of mean curvature in some singularly perturbed Neumann problems [J].
Del Pino, M ;
Felmer, PL ;
Wei, JC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 31 (01) :63-79
[6]  
del Pino M, 1999, INDIANA U MATH J, V48, P883
[7]   Concentration on curves for nonlinear Schrodinger equations [J].
Del Pino, Manuel ;
Kowalczyk, Michal ;
Wei, Jun-Cheng .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (01) :113-146
[8]   Asymptotic behavior of radial solutions for a semilinear elliptic problem on an annulus through Morse index [J].
Esposito, P. ;
Mancini, G. ;
Santra, Sanjiban ;
Srikanth, P. N. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 239 (01) :1-15
[9]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[10]   Multipeak solutions for a semilinear Neumann problem [J].
Gui, CF .
DUKE MATHEMATICAL JOURNAL, 1996, 84 (03) :739-769