On a weighted Sobolev embedding on the upper half-space in a borderline case

被引:2
作者
Abreu, E. A. M. [1 ]
Medeiros, E. S. [2 ]
Yang, J. [3 ]
机构
[1] Univ Fed Minas Gerais, Dept Matemat, BR-70230161 Belo Horizonte, MG, Brazil
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
[3] Jiangxi Normal Univ Nanchang, Dept Math, Nanchang 330022, Jiangxi, Peoples R China
关键词
Weighted Sobolev embedding; Trudinger-Moser inequality; Neumann boundary condition; Upper half-space; ELLIPTIC PROBLEM; CRITICAL GROWTH; INEQUALITIES;
D O I
10.1007/s10231-022-01217-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to establish some weighted Sobolev inequalities, which are the borderline cases of the Sobolev embedding on the upper half-space. We use this inequality to derive a weighted Trudinger-Moser-type inequality. Our proofs rely on a simple decomposition which is rearrangement free. As an application of our results, we address the existence of solutions for a class of elliptic problems with exponential critical growth.
引用
收藏
页码:2715 / 2732
页数:18
相关论文
共 17 条
[11]   SYMMETRY AND COMPACTNESS IN SOBOLEV SPACES [J].
LIONS, PL .
JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 49 (03) :315-334
[12]   H-W [J].
MEYERS, NG ;
SERRIN, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1964, 51 (06) :1055-&
[13]   SHARP FORM OF AN INEQUALITY BY N TRUDINGER [J].
MOSER, J .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1971, 20 (11) :1077-&
[14]   Sobolev inequalities in 2-D hyperbolic space: A borderline case [J].
Mugelli, F ;
Talenti, G .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 1998, 2 (03) :195-228
[15]   EXISTENCE OF SOLITARY WAVES IN HIGHER DIMENSIONS [J].
STRAUSS, WA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 55 (02) :149-162
[16]  
TRUDINGER NS, 1967, J MATH MECH, V17, P473
[17]   A new proof of subcritical Trudinger-Moser inequalities on the whole Euclidean space [J].
Yang Yunyan ;
Zhu Xiaobao .
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2013, 26 (04) :300-304