A Rotating Ring Disk Electrode Study of the Oxygen Reduction Reaction in Lithium Containing Dimethyl Sulfoxide Electrolyte: Role of Superoxide

被引:37
作者
Torres, Walter [1 ]
Mozhzhukhina, Nataliia [1 ]
Tesio, Alvaro Y. [1 ]
Calvo, Ernesto J. [1 ]
机构
[1] Fac Ciencias Exactas & Nat Buenos Aires, INQUIMAE, AR-1428 Buenos Aires, DF, Argentina
关键词
LI-O-2; BATTERY; CARBON CATHODE; STABILITY; SPECTROSCOPY; DISCHARGE;
D O I
10.1149/2.0801414jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We have employed the rotating ring disk electrode (RRDE) technique to study the oxygen reduction reaction (ORR) on gold and glassy carbon cathodes in dimethyl sulfoxide (DMSO) electrolytes containing lithium salts. At the gold ring electrode at 3.0 V vs. Li/Li+ (0.1 M LiPF6) soluble superoxide radical anion undergoes oxidation to O-2 under convective-diffusion conditions. For both glassy carbon and gold cathodes, typical oxygen reduction current-potential curves are sensitive to rotation speed and undergo a maximum and further electrode passivation by formation of Li2O2 while the Au ring electrode currents follow the same peak shape with detection of soluble superoxide at the ring downstream in the electrolyte solution. Unlike the behavior in acetonitrile-lithium solutions, LiO2 is more stable in DMSO and can diffuse out in solution and be detected at the ring electrode. While in cyclic voltammetry both time and potential effects are convoluted, we have carried out RRDE chrono-amperometry experiments at the disk electrode with detection of superoxide at the Au ring so that thus potential and time effects were clearly separated. The superoxide oxidation ring currents exhibit a maximum at 2.2V due to the interplay of O-2-formation by one-electron O-2 reduction, Li2O2 disproportionation and two-electron O-2 reduction. (C) 2014 The Electrochemical Society. All rights reserved.
引用
收藏
页码:A2204 / A2209
页数:6
相关论文
共 36 条
  • [11] Using Rotating Ring Disc Electrode Voltammetry to Quantify the Superoxide Radical Stability of Aprotic Li-Air Battery Electrolytes
    Herranz, Juan
    Garsuch, Arnd
    Gasteiger, Hubert A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (36) : 19084 - 19094
  • [12] AFM study of oxygen reduction products on HOPG in the LiPF6-DMSO electrolyte
    Herrera, Santiago E.
    Tesio, Alvaro Y.
    Clarenc, Romain
    Calvo, Ernesto J.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (21) : 9925 - 9929
  • [13] Izutsu K., 2002, Electrochemistry in Nonaqueous Solutions
  • [14] First
  • [15] Chemical Instability of Dimethyl Sulfoxide in Lithium-Air Batteries
    Kwabi, David G.
    Batcho, Thomas P.
    Amanchukwu, Chibueze V.
    Ortiz-Vitoriano, Nagore
    Hammond, Paula
    Thompson, Carl V.
    Shao-Horn, Yang
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (16): : 2850 - 2856
  • [16] Rechargeable Lithium/TEGDME-LiPF6/O2 Battery
    Laoire, Cormac O.
    Mukerjee, Sanjeev
    Plichta, Edward J.
    Hendrickson, Mary A.
    Abraham, K. M.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) : A302 - A308
  • [17] Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium-Air Battery
    Laoire, Cormac O.
    Mukerjee, Sanjeev
    Abraham, K. M.
    Plichta, Edward J.
    Hendrickson, Mary A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (19) : 9178 - 9186
  • [18] Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications
    Laoire, Cormac O.
    Mukerjee, Sanjeev
    Abraham, K. M.
    Plichta, Edward J.
    Hendrickson, Mary A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (46) : 20127 - 20134
  • [19] Marchini F., 2014, UNPUB
  • [20] Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries
    McCloskey, B. D.
    Speidel, A.
    Scheffler, R.
    Miller, D. C.
    Viswanathan, V.
    Hummelshoj, J. S.
    Norskov, J. K.
    Luntz, A. C.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (08): : 997 - 1001