A novel class of localized excitations for the (2+1)-dimensional higher-order Broer-Kaup system

被引:26
作者
Bai, CL [1 ]
Zhao, H [1 ]
机构
[1] Liaocheng Univ, Phys Sci & Informat Engn Sch, Liaocheng 252059, Peoples R China
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2004年 / 59卷 / 7-8期
基金
中国国家自然科学基金;
关键词
extended homogeneous balance method; variable separation solution; (2+1)-dimensional HBK system; localized excitations;
D O I
10.1515/zna-2004-7-804
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
By applying a special Backlund transformation, a general variable separation solution for the (2+1)-dimensional higher-order Broer-Kaup system is derived. In addition to some types of the usual localized excitations, such as dromions, lumps, ring solitons, oscillated dromions and breathers, soliton structures can be easily constructed by selecting arbitrary functions appropriately. A new class of localized structures, like fractal-dromions, fractal-lumps, peakons, compactons and folded excitations of this system is found by selecting appropriate functions. Some interesting novel features of these structures are revealed.
引用
收藏
页码:412 / 424
页数:13
相关论文
共 47 条
[1]   Fractal dromion, fractal lump, and multiple peakon excitations in a (2+1)-dimensional Broer-Kaup equations [J].
Bai, CL .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2004, 73 (01) :37-41
[2]  
Bai CL, 2001, COMMUN THEOR PHYS, V35, P409
[3]   SCATTERING OF LOCALIZED SOLITONS IN THE PLANE [J].
BOITI, M ;
LEON, JJP ;
MARTINA, L ;
PEMPINELLI, F .
PHYSICS LETTERS A, 1988, 132 (8-9) :432-439
[4]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[5]   PAINLEVE EXPANSIONS FOR NONINTEGRABLE EVOLUTION-EQUATIONS [J].
CARIELLO, F ;
TABOR, M .
PHYSICA D, 1989, 39 (01) :77-94
[6]   Particle methods for dispersive equations [J].
Chertock, A ;
Levy, D .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 171 (02) :708-730
[7]   Compacton solutions in a class of generalized fifth-order Korteweg-de Vries equations [J].
Cooper, F ;
Hyman, JM ;
Khare, A .
PHYSICAL REVIEW E, 2001, 64 (02) :13
[8]  
Davey A, 1974, P ROY SOC LOND A MAT, V338, P17
[9]   DROMIONS AND A BOUNDARY-VALUE PROBLEM FOR THE DAVEY-STEWARTSON-1 EQUATION [J].
FOKAS, AS ;
SANTINI, PM .
PHYSICA D-NONLINEAR PHENOMENA, 1990, 44 (1-2) :99-130
[10]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&