Powering a CO2 Reduction Catalyst with Visible Light through Multiple Sub-picosecond Electron Transfers from a Quantum Dot

被引:156
作者
Lian, Shichen [1 ]
Kodaimati, Mohamad S. [1 ]
Dolzhnikov, Dmitriy S. [1 ]
Calzada, Raul [1 ]
Weiss, Emily A. [1 ]
机构
[1] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
SELECTIVE PHOTOCHEMICAL REDUCTION; PHOTOCATALYTIC REDUCTION; CARBON-DIOXIDE; HIGHLY EFFICIENT; PHOTOELECTROCHEMICAL REDUCTION; TRANSFER DYNAMICS; CHARGE-TRANSFER; IRON; MECHANISM; MONOXIDE;
D O I
10.1021/jacs.7b03134
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photosensitization of molecular catalysts to reduce CO2 to CO is a sustainable route to storable solar fuels. Crucial to the sensitization process is highly efficient transfer of redox equivalents from sensitizer to catalyst; in systems with molecular sensitizers, this transfer is often slow because it is gated by diffusion-limited collisions between sensitizer and catalyst. This article describes the photosensitization of a meso-tetraphenylporphyrin iron(III) chloride (FeTPP) catalyst by colloidal, heavy metal-free CuInS2/ZnS quantum dots (QDs) to reduce CO2 to CO using 450 rim light. The sensitization efficiency (turnover number per absorbed unit of photon energy) of the QD system is a factor of 18 greater than that of an analogous system with a fac-tris(2-phenylpyridine)iridium sensitizer. This high efficiency originates in ultrafast electron transfer between the QD and FeTPP, enabled by formation of QD/FeTPP complexes. Optical spectroscopy reveals that the electron-transfer processes primarily responsible for the first two sensitization steps ((FeTPP)-T-III -> (FeTPP)-T-II, and (FeTPP)-T-II -> (FeTPP)-T-I) both occur in <200 fs.
引用
收藏
页码:8931 / 8938
页数:8
相关论文
共 62 条
[1]   The photophysics of photoredox catalysis: a roadmap for catalyst design [J].
Arias-Rotondo, Daniela M. ;
McCusker, James K. .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (21) :5803-5820
[2]   Ultrafast electron transfer dynamics from molecular adsorbates to semiconductor nanocrystalline thin films [J].
Asbury, JB ;
Hao, E ;
Wang, YQ ;
Ghosh, HN ;
Lian, TQ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (20) :4545-4557
[3]   Selective and Efficient Photocatalytic CO2 Reduction to CO Using Visible Light and an Iron-Based Homogeneous Catalyst [J].
Bonin, Julien ;
Robert, Marc ;
Routier, Mathilde .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (48) :16768-16771
[4]   Homogeneous Photocatalytic Reduction of CO2 to CO Using Iron(0) Porphyrin Catalysts: Mechanism and Intrinsic Limitations [J].
Bonin, Julien ;
Chaussemier, Marie ;
Robert, Marc ;
Routier, Mathilde .
CHEMCATCHEM, 2014, 6 (11) :3200-3207
[5]   Determining the Concentration of CuInS2 Quantum Dots from the Size-Dependent Molar Extinction Coefficient [J].
Booth, Matthew ;
Brown, Andrew P. ;
Evans, Stephen D. ;
Critchley, Kevin .
CHEMISTRY OF MATERIALS, 2012, 24 (11) :2064-2070
[6]   Four-electron deoxygenative reductive coupling of carbon monoxide at a single metal site [J].
Buss, Joshua A. ;
Agapie, Theodor .
NATURE, 2016, 529 (7584) :72-75
[7]   Driving oxygen coordinated ligand exchange at nanocrystal surfaces using trialkylsilylated chalcogenides [J].
Caldwell, Marissa A. ;
Albers, Aaron E. ;
Levy, Seth C. ;
Pick, Teresa E. ;
Cohen, Bruce E. ;
Helms, Brett A. ;
Milliron, Delia J. .
CHEMICAL COMMUNICATIONS, 2011, 47 (01) :556-558
[8]   Photocatalytic reduction of CO2 to CO utilizing a stable and efficient hetero-homogeneous hybrid system [J].
Chai, Zhigang ;
Li, Qi ;
Xu, Dongsheng .
RSC ADVANCES, 2014, 4 (85) :44991-44995
[9]   A robust and efficient cobalt molecular catalyst for CO2 reduction [J].
Chan, Sharon Lai-Fung ;
Lam, Tsz Lung ;
Yang, Chen ;
Yan, Siu-Cheong ;
Cheng, Nga Man .
CHEMICAL COMMUNICATIONS, 2015, 51 (37) :7799-7801
[10]   Observing the Multiexciton State in Singlet Fission and Ensuing Ultrafast Multielectron Transfer [J].
Chan, Wai-Lun ;
Ligges, Manuel ;
Jailaubekov, Askat ;
Kaake, Loren ;
Miaja-Avila, Luis ;
Zhu, X. -Y. .
SCIENCE, 2011, 334 (6062) :1541-1545