Effect of γ-PVDF on enhanced thermal conductivity and dielectric property of Fe-rGO incorporated PVDF based flexible nanocomposite film for efficient thermal management and energy storage applications

被引:58
作者
Karan, Sumanta Kumar [1 ]
Das, Amit Kumar [1 ]
Bera, Ranadip [1 ]
Paria, Sarbaranjan [1 ]
Maitra, Anirban [1 ]
Shrivastava, Nilesh Kumar [1 ]
Khatua, Bhanu Bhusan [1 ]
机构
[1] Indian Inst Technol, Ctr Mat Sci, Kharagpur 721302, W Bengal, India
关键词
POLY(VINYLIDENE FLUORIDE); AC CONDUCTIVITY; GRAPHENE; PERMITTIVITY; COMPOSITES; CONSTANT; DENSITY; ROUTE;
D O I
10.1039/c6ra04365h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Here, we investigate the effect of thermal conductivity of gamma-crystallites of PVDF in Fe-rGO/PVDF nanocomposite, which are of potential use as actuators and temperature sensors for thermal management applications. The formation of gamma-crystallites help to increase the thermal conductivity of the nanocomposite up to 0.89 W mK(-1) at low level of filler loading (3 wt%) and we showed that the thermal conductivity depends on the amount of crystalline polar gamma-phase in addition to filler concentration. Although thermal conductivity depends on the crystallinity of the nanocomposite, here enhancement of thermal conductivity is not related only to crystallinity, as the crystallinity is decreased compared to neat PVDF. However the thermal conductivity increases because of the generation of a higher number of gamma-crystallites of small size. Furthermore, the nanocomposite at low filler loading also shows high dielectric constant with low dielectric loss of the order of approximate to 57 and approximate to 0.13, respectively, at 1 kHz. Moreover, the energy storage property and its dependence on gamma-crystallite size reveals that the material can also exhibit superior released energy density (1.45 J cm(-3)) as compared to pure PVDF.
引用
收藏
页码:37773 / 37783
页数:11
相关论文
共 39 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]   DC and AC conductivity of carbon nanotubes-polyepoxy composites [J].
Barrau, S ;
Demont, P ;
Peigney, A ;
Laurent, C ;
Lacabanne, C .
MACROMOLECULES, 2003, 36 (14) :5187-5194
[3]   Flexible Nanodielectric Materials with High Permittivity for Power Energy Storage [J].
Dang, Zhi-Min ;
Yuan, Jin-Kai ;
Yao, Sheng-Hong ;
Liao, Rui-Jin .
ADVANCED MATERIALS, 2013, 25 (44) :6334-6365
[4]   Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity [J].
Du, FM ;
Scogna, RC ;
Zhou, W ;
Brand, S ;
Fischer, JE ;
Winey, KI .
MACROMOLECULES, 2004, 37 (24) :9048-9055
[5]   Hydrangea-like zinc oxide superstructures for ferroelectric polymer composites with high thermal conductivity and high dielectric constant [J].
Fang, Lijun ;
Wu, Wei ;
Huang, Xingyi ;
He, Jinliang ;
Jiang, Pingkai .
COMPOSITES SCIENCE AND TECHNOLOGY, 2015, 107 :67-74
[6]   Thermal conductivity enhancement of epoxy adhesive using graphene sheets as additives [J].
Fu, Yuan-Xiang ;
He, Zhuo-Xian ;
Mo, Dong-Chuan ;
Lu, Shu-Shen .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2014, 86 :276-283
[7]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[8]   Effects of reduced graphene on crystallization behavior, thermal conductivity and tribological properties of poly(vinylidene fluoride) [J].
Han, Peng ;
Fan, Jingbo ;
Jing, Maoxiang ;
Zhu, Lin ;
Shen, Xiangqian ;
Pan, Tiezheng .
JOURNAL OF COMPOSITE MATERIALS, 2014, 48 (06) :659-666
[9]   Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review [J].
Han, Zhidong ;
Fina, Alberto .
PROGRESS IN POLYMER SCIENCE, 2011, 36 (07) :914-944
[10]   High Dielectric Permittivity and Low Percolation Threshold in Nanocomposites Based on Poly(vinylidene fluoride) and Exfoliated Graphite Nanoplates [J].
He, Fuan ;
Lau, Sienting ;
Chan, Helen Laiwa ;
Fan, Jintu .
ADVANCED MATERIALS, 2009, 21 (06) :710-+