Scaling, cumulant ratios, and height distribution of ballistic deposition in 3+1 and 4+1 dimensions

被引:15
作者
Alves, Sidiney G. [1 ]
Ferreira, Silvio C. [2 ]
机构
[1] Univ Fed Sao Joao Del Rei, Dept Fis & Matemat, BR-36420000 Ouro Branco, MG, Brazil
[2] Univ Fed Vicosa, Dept Fis, BR-36570000 Vicosa, MG, Brazil
关键词
UNIVERSAL FLUCTUATIONS; INTERFACES; EXPONENTS; GROWTH; PROPAGATION;
D O I
10.1103/PhysRevE.93.052131
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the origin of the scaling corrections in ballistic deposition models in high dimensions using the method proposed by Alves et al. [Phys. Rev. E 90, 052405 (2014)] in d = 2 + 1 dimensions, where the intrinsic width associated with the fluctuations of the height increments during the deposition processes is explicitly taken into account. In the present work, we show that this concept holds for d = 3 + 1 and 4 + 1 dimensions. We have found that growth and roughness exponents and dimensionless cumulant ratios are in agreement with other models, presenting small finite-time corrections to the scaling, that in principle belong to the Kardar-Parisi-Zhang (KPZ) universality class in both d = 3 + 1 and 4 + 1. Our results constitute further evidence that the upper critical dimension of the KPZ class, if it exists, is larger than 4.
引用
收藏
页数:8
相关论文
共 47 条
[1]   Comment on "Upper critical dimension of the Kardar-Parisi-Zhang equation" [J].
Ala-Nissila, T .
PHYSICAL REVIEW LETTERS, 1998, 80 (04) :887-887
[2]   SCALING EXPONENTS FOR KINETIC ROUGHENING IN HIGHER DIMENSIONS [J].
ALANISSILA, T ;
HJELT, T ;
KOSTERLITZ, JM ;
VENALAINEN, O .
JOURNAL OF STATISTICAL PHYSICS, 1993, 72 (1-2) :207-225
[3]   Universality of fluctuations in the Kardar-Parisi-Zhang class in high dimensions and its upper critical dimension [J].
Alves, S. G. ;
Oliveira, T. J. ;
Ferreira, S. C. .
PHYSICAL REVIEW E, 2014, 90 (02)
[4]   Origins of scaling corrections in ballistic growth models [J].
Alves, Sidiney G. ;
Oliveira, Tiago J. ;
Ferreira, Silvio C. .
PHYSICAL REVIEW E, 2014, 90 (05)
[5]   Non-universal parameters, corrections and universality in Kardar-Parisi-Zhang growth [J].
Alves, Sidiney G. ;
Oliveira, Tiago J. ;
Ferreira, Silvio C. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
[6]  
[Anonymous], 1959, J. Colloid Sci., DOI DOI 10.1016/0095-8522(59)90041-8
[7]  
[Anonymous], 1998, Fractals, scaling and growth far from equilibrium
[8]  
[Anonymous], 1995, FRACTAL CONCEPT SURF, DOI DOI 10.1017/CBO9780511599798
[9]   Nonperturbative Renormalization Group for the Kardar-Parisi-Zhang Equation [J].
Canet, Leonie ;
Chate, Hugues ;
Delamotte, Bertrand ;
Wschebor, Nicolas .
PHYSICAL REVIEW LETTERS, 2010, 104 (15)
[10]   Interface fluctuations for deposition on enlarging flat substrates [J].
Carrasco, I. S. S. ;
Takeuchi, K. A. ;
Ferreira, S. C. ;
Oliveira, T. J. .
NEW JOURNAL OF PHYSICS, 2014, 16