Quantum Steering in Two- and Three-Mode PT-Symmetric Systems

被引:2
作者
Vinh Le Duc [1 ]
Kalaga, Joanna K. [1 ,2 ,3 ]
Leonski, Wieslaw [1 ,2 ,3 ]
Nowotarski, Mateusz [1 ]
Gruszka, Konrad [4 ]
Kostrzewa, Malgorzata [5 ]
机构
[1] Univ Zielona Gora, Inst Phys, Quantum Opt & Engn Div, Prof Z Szafrana 4a, PL-65516 Zielona Gora, Poland
[2] Palacky Univ, Joint Lab Opt, 17 Listopadu 12, Olomouc 77146, Czech Republic
[3] Palacky Univ, Fac Sci, Inst Phys CAS, 17 Listopadu 12, Olomouc 77146, Czech Republic
[4] Czestochowa Tech Univ, Dept Phys, Ave Armii Krajowej 19, PL-42200 Czestochowa, Poland
[5] Jan Dlugosz Univ Czestochowa, Div Theoret Phys, Ave Armii Krajowej 13-15, PL-42200 Czestochowa, Poland
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 11期
关键词
PT-symmetry; quantum correlations; quantum steering; cavity; PARITY-TIME SYMMETRY; PODOLSKY-ROSEN PARADOX;
D O I
10.3390/sym13112201
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider two PT-symmetric models, consisting of two or three single-mode cavities. In both models, the cavities are coupled to each other by linear interactions, forming a linear chain. Additionally, the first and last of such cavities interact with an environment. Since the models are PT-symmetric, they are described by non-Hermitian Hamiltonians that, for a specific range of system parameters, possess real eigenvalues. We show that in the models considered in the article, the steering generation process strongly depends on the coupling strengths and rates of the gains/losses in energy. Moreover, we find the values of parameters describing the system for which the steering appears.
引用
收藏
页数:12
相关论文
共 41 条
[1]   Hamiltonian formulation of the standard PT-symmetric nonlinear Schrodinger dimer [J].
Barashenkov, I. V. .
PHYSICAL REVIEW A, 2014, 90 (04)
[2]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[3]   Optical lattices with PT symmetry are not transparent [J].
Berry, M. V. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (24)
[4]   PT Symmetry and Spontaneous Symmetry Breaking in a Microwave Billiard [J].
Bittner, S. ;
Dietz, B. ;
Guenther, U. ;
Harney, H. L. ;
Miski-Oglu, M. ;
Richter, A. ;
Schaefer, F. .
PHYSICAL REVIEW LETTERS, 2012, 108 (02)
[5]   Detection of entanglement in asymmetric quantum networks and multipartite quantum steering [J].
Cavalcanti, D. ;
Skrzypczyk, P. ;
Aguilar, G. H. ;
Nery, R. V. ;
Ribeiro, P. H. Souto ;
Walborn, S. P. .
NATURE COMMUNICATIONS, 2015, 6
[6]   Unified criteria for multipartite quantum nonlocality [J].
Cavalcanti, E. G. ;
He, Q. Y. ;
Reid, M. D. ;
Wiseman, H. M. .
PHYSICAL REVIEW A, 2011, 84 (03)
[7]   Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox [J].
Cavalcanti, E. G. ;
Jones, S. J. ;
Wiseman, H. M. ;
Reid, M. D. .
PHYSICAL REVIEW A, 2009, 80 (03)
[8]  
Chang L, 2014, NAT PHOTONICS, V8, P524, DOI [10.1038/nphoton.2014.133, 10.1038/NPHOTON.2014.133]
[9]   Generalized parity-time symmetry condition for enhanced sensor telemetry [J].
Chen, Pai-Yen ;
Sakhdari, Maryam ;
Hajizadegan, Mehdi ;
Cui, Qingsong ;
Cheng, Mark Ming-Cheng ;
El-Ganainy, Ramy ;
Alu, Andrea .
NATURE ELECTRONICS, 2018, 1 (05) :297-304
[10]   Stimulation of the Fluctuation Superconductivity by PT Symmetry [J].
Chtchelkatchev, N. M. ;
Golubov, A. A. ;
Baturina, T. I. ;
Vinokur, V. M. .
PHYSICAL REVIEW LETTERS, 2012, 109 (15)