Intestinal microbiome of broiler chickens after use of nanoparticles and metal salts

被引:50
作者
Yausheva, Elena [1 ]
Miroshnikov, Sergey [1 ]
Sizova, Elena [1 ,2 ]
机构
[1] All Russian Res Inst Beef Cattle Breeding, State Educ Inst, 29,9 Yanvarya St, Orenburg 460000, Russia
[2] Orenburg State Univ, Pobedy Pr 13, Orenburg 460018, Russia
基金
俄罗斯科学基金会;
关键词
Nanoparticles; Copper; Iron; Zinc; Microbiota; Metagenomic sequencing; IRON-OXIDE NANOPARTICLES; GRAM-NEGATIVE BACTERIA; SILVER NANOPARTICLES; GUT MICROBIOTA; ZINC-OXIDE; GASTROINTESTINAL MICROBIOME; ANTIBACTERIAL ACTIVITY; ANTIMICROBIAL ACTIVITY; COPPER NANOPARTICLES; CONTROLLED-TRIAL;
D O I
10.1007/s11356-018-1991-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The research included the study of influence of ultrafine particle preparations (nanoparticles of copper, zinc, iron, CuZn alloy) and metal salts (iron pyrophosphate, copper asparginate, zinc asparginate) on the composition of cecal microbiota of broiler chickens. Before adding the studied nanoparticles and metal salts to the diet, cecal microbiota of broiler chickens was represented by 76% Firmicutes taxon and 16% Bacteroidetes. Numerous among them were the bacteria of the taxa Anaerotruncus spp., Lactobacillus spp., Blautia spp., Alistipes spp., and Bacteroides spp.; they constituted 18, 17, 11, and 6%, respectively. A peculiarity of action of the most analyzed metals in nanoform and in the form of salts was a decrease in the number of phylum Firmicutes bacteria and an increase in the number of microorganisms of the phylum Bacteroidetes. The number of bacteria belonging to the families Ruminococcaceae (III, IV, V, VII, and VIII groups), Bacteroidaceae (in all experimental groups), and Lachnospiraceae (I, IV, V, and VII groups) was registered within the taxa of Firmicutes and Bacteroidetes. At the same time, in some experimental groups, the number of bacteria of the family Lachnospiraceae (II, III, and VIII) decreased in the intestine. The data obtained can be used to assess the possibility of using metal nanoparticles in the poultry diet, as a micronutrient preparation, to correct dysbiosis and to improve the utilization of fodder energy.
引用
收藏
页码:18109 / 18120
页数:12
相关论文
共 104 条
[1]   Enterococcus faecalis zinc-responsive proteins mediate bacterial defence against zinc overload, lysozyme and oxidative stress [J].
Abrantes, Marta C. ;
Kok, Jan ;
Silva Lopes, Maria de Fatima .
MICROBIOLOGY-SGM, 2014, 160 :2755-2762
[2]   Bacteria-zinc co-localization implicates enhanced synthesis of cysteine-rich peptides in zinc detoxification when Brassica juncea is inoculated with Rhizobium leguminosarum [J].
Adediran, Gbotemi A. ;
Ngwenya, Bryne T. ;
Mosselmans, J. Frederick W. ;
Heal, Kate V. .
NEW PHYTOLOGIST, 2016, 209 (01) :280-293
[3]   Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface [J].
Arakha, Manoranjan ;
Pal, Sweta ;
Samantarrai, Devyani ;
Panigrahi, Tapan K. ;
Mallick, Bairagi C. ;
Pramanik, Krishna ;
Mallick, Bibekanand ;
Jha, Suman .
SCIENTIFIC REPORTS, 2015, 5
[4]   Induction of Colonic Regulatory T Cells by Indigenous Clostridium Species [J].
Atarashi, Koji ;
Tanoue, Takeshi ;
Shima, Tatsuichiro ;
Imaoka, Akemi ;
Kuwahara, Tomomi ;
Momose, Yoshika ;
Cheng, Genhong ;
Yamasaki, Sho ;
Saito, Takashi ;
Ohba, Yusuke ;
Taniguchi, Tadatsugu ;
Takeda, Kiyoshi ;
Hori, Shohei ;
Ivanov, Ivaylo I. ;
Umesaki, Yoshinori ;
Itoh, Kikuji ;
Honda, Kenya .
SCIENCE, 2011, 331 (6015) :337-341
[5]   Antimicrobial and Genotoxicity Effects of Zero-valent Iron Nanoparticles [J].
Barzan, Elham ;
Mehrabian, Sedigheh ;
Irian, Saeed .
JUNDISHAPUR JOURNAL OF MICROBIOLOGY, 2014, 7 (05)
[6]   Sub-toxic effects of CuO nanoparticles on bacteria: Kinetics, role of Cu ions and possible mechanisms of action [J].
Bondarenko, Olesja ;
Ivask, Angela ;
Kaekinen, Aleksandr ;
Kahru, Anne .
ENVIRONMENTAL POLLUTION, 2012, 169 :81-89
[7]   Effects of food-borne nanomaterials on gastrointestinal tissues and microbiota [J].
Bouwmeester, Hans ;
van der Zande, Meike ;
Jepson, Mark A. .
WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2018, 10 (01)
[8]   Mechanism of antibacterial activity of copper nanoparticles [J].
Chatterjee, Arijit Kumar ;
Chakraborty, Ruchira ;
Basu, Tarakdas .
NANOTECHNOLOGY, 2014, 25 (13)
[9]   Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application [J].
Chatterjee, Saptarshi ;
Bandyopadhyay, Arghya ;
Sarkar, Keka .
JOURNAL OF NANOBIOTECHNOLOGY, 2011, 9
[10]   Enhanced transparency, mechanical durability, and antibacterial activity of zinc nanoparticles on glass substrate [J].
Choi, Hyung-Jin ;
Choi, Jin-Seok ;
Park, Byeong-Ju ;
Eom, Ji-Ho ;
Heo, So-Young ;
Jung, Min-Wook ;
An, Ki-Seok ;
Yoon, Soon-Gil .
SCIENTIFIC REPORTS, 2014, 4