Review article: State-of-the-art trajectory tracking of autonomous vehicles

被引:34
作者
Li, Lei [1 ,2 ]
Li, Jun [1 ,2 ]
Zhang, Shiyi [3 ]
机构
[1] Chongqing Jiaotong Univ, Sch Mechanotron & Vehicle Engn, Chongqing 400074, Peoples R China
[2] Chongqing Key Lab Rail Vehicle Syst Integrat & Co, Chongqing 400074, Peoples R China
[3] Chongqing Jiaotong Univ, Sch Shipping & Naval Architecture, Chongqing 400074, Peoples R China
基金
中国国家自然科学基金;
关键词
MODEL-PREDICTIVE CONTROL; PATH-TRACKING; SLIDING-MODE; OBSTACLE AVOIDANCE; STEERING CONTROL; ELECTRIC VEHICLES; GROUND VEHICLES; LATERAL CONTROL; CONTROLLER; INVARIANCE;
D O I
10.5194/ms-12-419-2021
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Air pollution, energy consumption, and human safety issues have aroused people's concern around the world. This phenomenon could be significantly alleviated with the development of automatic driving techniques, artificial intelligence, and computer science. Autonomous vehicles can be generally modularized as environment perception, path planning, and trajectory tracking. Trajectory tracking is a fundamental part of autonomous vehicles which controls the autonomous vehicles effectively and stably to track the reference trajectory that is predetermined by the path planning module. In this paper, a review of the state-of-the-art trajectory tracking of autonomous vehicles is presented. Both the trajectory tracking methods and the most commonly used trajectory tracking controllers of autonomous vehicles, besides state-of-art research studies of these controllers, are described.
引用
收藏
页码:419 / 432
页数:14
相关论文
共 116 条
[1]  
Abatari H. T., 2013, 2013 1 RSI ISM INT C
[2]   Obstacle Avoidance in Real Time With Nonlinear Model Predictive Control of Autonomous Vehicles [J].
Abbas, Muhammad Awais ;
Milman, Ruth ;
Eklund, J. Mikael .
CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING-REVUE CANADIENNE DE GENIE ELECTRIQUE ET INFORMATIQUE, 2017, 40 (01) :12-22
[3]  
Al-Mayyahi A., 2015, 2015 IEEE 13 INT S A
[4]   Autonomous racing using Linear Parameter Varying-Model Predictive Control (LPV-MPC) [J].
Alcala, Eugenio ;
Puig, Vicenc ;
Quevedo, Joseba ;
Rosolia, Ugo .
CONTROL ENGINEERING PRACTICE, 2020, 95
[5]   TS-MPC for Autonomous Vehicles Including a TS-MHE-UIO Estimator [J].
Alcala, Eugenio ;
Puig, Vicenc ;
Quevedo, Joseba .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (07) :6403-6413
[6]   Gain-scheduling LPV control for autonomous vehicles including friction force estimation and compensation mechanism [J].
Alcala, Eugenio ;
Puig, Vicenc ;
Quevedo, Joseba ;
Escobet, Teresa .
IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (12) :1683-1693
[7]   Autonomous vehicle control using a kinematic Lyapunov-based technique with LQR-LMI tuning [J].
Alcala, Eugenio ;
Puig, Vicenc ;
Quevedo, Joseba ;
Escobet, Teresa ;
Comasolivas, Ramon .
CONTROL ENGINEERING PRACTICE, 2018, 73 :1-12
[8]  
Alia C, 2015, IEEE INT VEH SYM, P674, DOI 10.1109/IVS.2015.7225762
[9]  
Allou S., 2017 18 INT C SCI TE
[10]   Adaptive modified Stanley controller with fuzzy supervisory system for trajectory tracking of an autonomous armoured vehicle [J].
Amer, Noor Hafizah ;
Hudha, Khisbullah ;
Zamzuri, Hairi ;
Aparow, Vimal Rau ;
Abidin, Amar Faiz Zainal ;
Abd Kadir, Zulkiffli ;
Murrad, Muhamad .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2018, 105 :94-111